




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁2025屆江西省九江市第十一中學(xué)數(shù)學(xué)九年級第一學(xué)期開學(xué)教學(xué)質(zhì)量檢測模擬試題題號一二三四五總分得分A卷(100分)一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、(4分)如圖,正方形ABCD的對角線相交于點O,點O又是正方形A1B1C1O的一個頂點,且這兩個正方形的邊長都為1.若正方形A1B1C1O繞點O轉(zhuǎn)動,則兩個正方形重疊部分的面積為()A.16 B.4 C.1 D.12、(4分)已知點P(a+l,2a-3)關(guān)于x軸的對稱點在第一象限,則a的取值范圍是()A. B. C. D.3、(4分)如圖,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于點E,則DE的長為()A.6 B.5 C.4 D.34、(4分)如圖,已知點E在正方形ABCD內(nèi),滿足∠AEB=90°,AE=6,BE=8,則陰影部分的面積是()A.48 B.60C.76 D.805、(4分)下列各組數(shù)中不能作為直角三角形三邊長的是()A.5,13,12 B.3,1,2 C.6,7,10 D.3,4,56、(4分)下列等式中,不成立的是A. B.C. D.7、(4分)四邊形中,,,,,垂足分別為,則四邊形一定是()A.正方形 B.菱形 C.平行四邊形 D.矩形8、(4分)在反比例函數(shù)的圖象的每一個分支上,y都隨x的增大而減小,則k的取值范圍是()A.k>1 B.k>0 C.k≥1 D.k<1二、填空題(本大題共5個小題,每小題4分,共20分)9、(4分)已知一組數(shù)據(jù)1,2,0,﹣1,x,1的平均數(shù)是1,則這組數(shù)據(jù)的中位數(shù)為_____.10、(4分)下列4個分式:①;②;③;④,中最簡分式有_____個.11、(4分)如圖,矩形紙片,,,點在邊上,將沿折疊,點落在點處,,分別交于點,,且,則的值為_____________.12、(4分)如圖,矩形紙片ABCD,AB=2,∠ADB=30°,沿對角線BD折疊(使△ABD和△EBD落在同一平面內(nèi)),A、E兩點間的距離為______▲_____.13、(4分)當(dāng)x分別取值,,,,,1,2,,2007,2008,2009時,計算代數(shù)式的值,將所得的結(jié)果相加,其和等于______.三、解答題(本大題共5個小題,共48分)14、(12分)如圖,邊長為3正方形的頂點與原點重合,點在軸,軸上。反比例函數(shù)的圖象交于點,連接,.(1)求反比例函數(shù)的解析式;(2)過點作軸的平行線,點在直線上運動,點在軸上運動.①若是以為直角頂點的等腰直角三角形,求的面積;②將“①”中的“以為直角頂點的”去掉,將問題改為“若是等腰直角三角形”,的面積除了“①”中求得的結(jié)果外,還可以是______.(直接寫答案,不用寫步驟)15、(8分)某公司10名銷售員,去年完成的銷售額情況如表:銷售額(單位:萬元)34567810銷售員人數(shù)(單位:人)1321111(1)求銷售額的平均數(shù)、眾數(shù)、中位數(shù);(2)今年公司為了調(diào)動員工積極性,提高年銷售額,準(zhǔn)備采取超額有獎的措施,請根據(jù)(1)的結(jié)果,通過比較,合理確定今年每個銷售員統(tǒng)一的銷售額標(biāo)準(zhǔn)是多少萬元?16、(8分)△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF,(1)觀察猜想如圖1,當(dāng)點D在線段BC上時,①BC與CF的位置關(guān)系為:.②BC,CD,CF之間的數(shù)量關(guān)系為:;(將結(jié)論直接寫在橫線上)(2)數(shù)學(xué)思考如圖2,當(dāng)點D在線段CB的延長線上時,結(jié)論①,②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明.(3)拓展延伸如圖3,當(dāng)點D在線段BC的延長線上時,延長BA交CF于點G,連接GE,若已知AB=2,CD=BC,請求出GE的長.17、(10分)如圖,正方形ABCD中,AC是對角線,今有較大的直角三角板,一邊始終經(jīng)過點B,直角頂點P在射線AC上移動,另一邊交DC于Q.(1)如圖①,當(dāng)點Q在DC邊上時,猜想并寫出PB與PQ所滿足的數(shù)量關(guān)系,并加以證明;(2)如圖②,當(dāng)點Q落在DC的延長線上時,猜想并寫出PB與PQ滿足的數(shù)量關(guān)系,并證明你的猜想.18、(10分)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點A(﹣1,﹣3),C(3,n),交y軸于點B,交x軸于點D.(1)求反比例函數(shù)y=和一次函數(shù)y=kx+b的表達(dá)式;(2)連接OA,OC.求△AOC的面積.B卷(50分)一、填空題(本大題共5個小題,每小題4分,共20分)19、(4分)如圖,在Rt△ABC中,∠C=90°,∠ABC=30°,AB=10,將△ABC沿CB方向向右平移得到△DEF.若四邊形ABED的面積為20,則平移距離為___________.20、(4分)如圖,線段AC、BD交于點O,請你添加一個條件:________,使△AOB∽△COD.21、(4分)一個n邊形的內(nèi)角和是720°,則n=_____.22、(4分)已知四邊形是平行四邊形,且,,三點的坐標(biāo)分別是,,則這個平行四邊形第四個頂點的坐標(biāo)為______.23、(4分)計算:________________.二、解答題(本大題共3個小題,共30分)24、(8分)“大美武漢,暢游江城”.某校數(shù)學(xué)興趣小組就“最想去的武漢市旅游景點”隨機調(diào)查了本校部分學(xué)生,要求每位同學(xué)選擇且只能選擇一個最想去的景點,下面是根據(jù)調(diào)查結(jié)果進行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計圖:請根據(jù)圖中提供的信息,解答下列問題:(1)求被調(diào)查的學(xué)生總?cè)藬?shù);(2)補全條形統(tǒng)計圖,并求扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數(shù);(3)若該校共有1200名學(xué)生,請估計“最想去景點B“的學(xué)生人數(shù).25、(10分)已知關(guān)于的方程.(1)求證:無論取何值時,方程總有實數(shù)根;(2)給取一個適當(dāng)?shù)闹?,使方程的兩個根相等,并求出此時的兩個根.26、(12分)邊長為的正方形中,點是上一點,過點作交射線于點,且,則線段的長為?
參考答案與詳細(xì)解析一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、C【解析】
在正方形ABCD中,OA=OB,∠OAE=∠OBF=45°,∵∠AOE+∠BOE=90°,∠BOF+∠BOE=90°,∴∠AOE=∠BOF,在△AOE與△BOF中,,∴△AOE≌△BOF(ASA),則四邊形OEBF的面積=S△BOE+S△BOF=S△BOE+S△AOE=S△AOB=S正方形ABCD==1.故選C.2、B【解析】關(guān)于x軸對稱的點的坐標(biāo),一元一次不等式組的應(yīng)用.【分析】根據(jù)“關(guān)于x軸對稱的點,橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù)”,再根據(jù)各象限內(nèi)的點的坐標(biāo)的特點列出不等式組求解即可:∵點P(a+1,2a-3)關(guān)于x軸的對稱點在第一象限,∴點P在第四象限.∴.解不等式①得,a>-1,解不等式②得,a<,所以,不等式組的解集是-1<a<.故選B.3、D【解析】
試題分析:已知,在△ABC中,∠ACB=90°,AC=8,AB=10,根據(jù)勾股定理可得BC=6,又因DE垂直平分AC,∠ACB=90°,可得DE為△ABC的中位線,根據(jù)三角形的中位線定理可得DE=BC=3,故答案選D.考點:勾股定理;三角形的中位線定理.4、C【解析】試題解析:∵∠AEB=90°,AE=6,BE=8,∴AB=∴S陰影部分=S正方形ABCD-SRt△ABE=102-=100-24=76.故選C.考點:勾股定理.5、C【解析】
由勾股定理的逆定理,只要驗證兩小邊的平方和等于最長邊的平方即可.【詳解】解:A、52+122=132,故不是直角三角形,故選項正確;B、32+12=22,故是直角三角形,故選項錯誤;C、62+72≠102,故是直角三角形,故選項錯誤;D、32+42=52,故是直角三角形,故選項錯誤.故選:C.本題考查勾股定理的逆定理的應(yīng)用.判斷三角形是否為直角三角形,已知三角形三邊的長,只要利用勾股定理的逆定理加以判斷即可.6、D【解析】
根據(jù)不等式的性質(zhì),對選項進行求解即可.【詳解】解:、,故成立,不合題意;、,故成立,不合題意;、,故成立,不合題意;、,故不成立,符合題意.故選:.本題考查不等式,熟練掌不等式的性質(zhì)及運算法則是解題關(guān)鍵.7、C【解析】
根據(jù)已知條件得到BF=DE,由垂直的定義得到∠AED=∠CFB=90°,根據(jù)全等三角形的判定定理可得Rt△ADE≌Rt△CBF,根據(jù)全等三角形的性質(zhì)得到∠ADE=∠CBF,由平行線的判定得到AD∥BC,根據(jù)平行四邊形的判定定理即可得到結(jié)論.【詳解】證明:∵BE=DF,∴BE?EF=DF?EF,即BF=DE,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在Rt△ADE與Rt△CBF中,AD=BC,DE=BF,∴Rt△ADE≌Rt△CBF(HL),∴∠ADE=∠CBF,∴AD∥BC,∴四邊形ABCD是平行四邊形,故選:C.本題考查了全等三角形的判定和性質(zhì),平行四邊形的判定和性質(zhì),熟練掌握全等三角形的判定和性質(zhì)是解題的關(guān)鍵.8、A【解析】
根據(jù)反比例函數(shù)的性質(zhì),當(dāng)反比例函數(shù)的系數(shù)大于0時,在每一支曲線上,y都隨x的增大而減小,可得k﹣1>0,解可得k的取值范圍.【詳解】解:根據(jù)題意,在反比例函數(shù)圖象的每一支曲線上,y都隨x的增大而減小,即可得k﹣1>0,解得k>1.故選A.【點評】本題考查了反比例函數(shù)的性質(zhì):①當(dāng)k>0時,圖象分別位于第一、三象限;當(dāng)k<0時,圖象分別位于第二、四象限.②當(dāng)k>0時,在同一個象限內(nèi),y隨x的增大而減??;當(dāng)k<0時,在同一個象限,y隨x的增大而增大.二、填空題(本大題共5個小題,每小題4分,共20分)9、2【解析】
解:這組數(shù)據(jù)的平均數(shù)為2,
有(2+2+0-2+x+2)=2,
可求得x=2.
將這組數(shù)據(jù)從小到大重新排列后,觀察數(shù)據(jù)可知最中間的兩個數(shù)是2與2,
其平均數(shù)即中位數(shù)是(2+2)÷2=2.
故答案是:2.10、①④【解析】
根據(jù)最簡分式的定義逐式分析即可.【詳解】①是最簡分式;②=,不是最簡分式;③=,不是最簡分式;④是最簡分式.故答案為2.本題考查了最簡分式的識別,與最簡分?jǐn)?shù)的意義類似,當(dāng)一個分式的分子與分母,除去1以外沒有其它的公因式時,這樣的分式叫做最簡分式.11、【解析】
由矩形的性質(zhì)和已知條件,可判定,設(shè),根據(jù)全等三角形的性質(zhì)及矩形的性質(zhì)可用含x的式子表示出DF和AF的長,在根據(jù)勾股定理可求出x的值,即可確定AF的值.【詳解】解:四邊形ABCD是矩形,,,是由沿折疊而來的,,又(AAS)設(shè),則在中,根據(jù)勾股定理得:,即解得故答案為:本題考查了求多邊形中的線段長,主要涉及的知識點有矩形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,數(shù)學(xué)的方程思想,用同一個字母表示出直角三角形中的三邊長是解題的關(guān)鍵.12、1【解析】根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.解答:解:如圖,矩形ABCD的對角線交于點F,連接EF,AE,則有AF=FC=EF=FD=BF.∵∠ADB=30°,∴∠CFD=∠EFD=∠AFB=60°,△AFE,△AFB都是等邊三角形,有AE=AF=AB=1.13、1【解析】
先把和代入代數(shù)式,并對代數(shù)式化簡,得到它們的和為1,然后把代入代數(shù)式求出代數(shù)式的值,再把所得的結(jié)果相加求出所有結(jié)果的和.【詳解】因為,即當(dāng)x分別取值,為正整數(shù)時,計算所得的代數(shù)式的值之和為1;而當(dāng)時,.因此,當(dāng)x分別取值,,,,,1,2,,2117,2118,2119時,計算所得各代數(shù)式的值之和為1.故答案為:1.本題考查的是代數(shù)式的求值,本題的x的取值較多,并且除外,其它的數(shù)都是成對的且互為倒數(shù),把互為倒數(shù)的兩個數(shù)代入代數(shù)式得到它們的和為1,這樣計算起來就很方便.三、解答題(本大題共5個小題,共48分)14、(1);(2)①或.②1或2.【解析】
(1)設(shè)的坐標(biāo)分別為,根據(jù)三角形的面積,構(gòu)建方程即可解決問題.
(2)①分兩種情形畫出圖形:當(dāng)點P在線段BM上,當(dāng)點P在線段BM的延長線上時,分別利用全等三角形的性質(zhì)求解即可.
②當(dāng)點Q是等腰三角形的直角頂點時,分兩種情形分別求解即可.【詳解】解:(1))∵四邊形OACD是正方形,邊長為3,
∴點B的縱坐標(biāo)為3,點E的橫坐標(biāo)為3,
∵反比例函數(shù)的圖象交AC,CD于點B,E,設(shè)的坐標(biāo)分別為.∵S△OBE=4,可得,.解得,,(舍).所以,反比例函數(shù)的解析式為.(2))①如圖1中,設(shè)直線m交OD于M.由(1)可知B(1,3),AB=1,BC=2,
當(dāng)PC=PQ,∠CPQ=90°時,
∵∠CBP=∠PMQ=∠CPQ=90°,
∴∠CPB+∠BCP=90°,∠CPB+∠PQM=90°,
∴∠PCB=∠MPQ,∵PC=PQ,
∴△CBP≌△PMQ(AAS),
∴BC=PM=2,PB=MQ=1,
∴PC=PQ=∴S△PCQ=如圖2中,當(dāng)PQ=PC,∠CPQ=90°,同法可得△CBP≌△PMQ(AAS),
∴PM=BC=2,OM=PB=1,
∴PC=PQ=,∴S△PCQ=.所以,的面積為或.②當(dāng)點Q是等腰三角形的直角頂點時,同法可得CQ=PQ=,此時S△PCQ=1.或CQ′=PQ′=,可得S△P′CQ′=2,不存在點C為等腰三角形的直角頂點,
綜上所述,△CPQ的面積除了“①”中求得的結(jié)果外,還可以是1或2.
故答案為1或2.本題屬于反比例函數(shù)綜合題,考查了正方形的性質(zhì),反比例函數(shù)的性質(zhì),全等三角形的判定和性質(zhì),勾股定理等知識,解題的關(guān)鍵是正確尋找全等三角形解決問題,屬于中考??碱}型.15、(1)平均數(shù)5.6(萬元);眾數(shù)是4(萬元);中位數(shù)是5(萬元);(2)今年每個銷售人員統(tǒng)一的銷售標(biāo)準(zhǔn)應(yīng)是5萬元.【解析】
(1)根據(jù)平均數(shù)公式求得平均數(shù),根據(jù)次數(shù)出現(xiàn)最多的數(shù)確定眾數(shù),按從小到大順序排列好后求得中位數(shù).
(2)根據(jù)平均數(shù),中位數(shù),眾數(shù)的意義回答.【詳解】解:(1)平均數(shù)=(3×1+4×3+5×2+6×1+7×1+8×1+10×1)=5.6(萬元);出現(xiàn)次數(shù)最多的是4萬元,所以眾數(shù)是4(萬元);因為第五,第六個數(shù)均是5萬元,所以中位數(shù)是5(萬元).(2)今年每個銷售人員統(tǒng)一的銷售標(biāo)準(zhǔn)應(yīng)是5萬元.理由如下:若規(guī)定平均數(shù)5.6萬元為標(biāo)準(zhǔn),則多數(shù)人無法或不可能超額完成,會挫傷員工的積極性;若規(guī)定眾數(shù)4萬元為標(biāo)準(zhǔn),則大多數(shù)人不必努力就可以超額完成,不利于提高年銷售額;若規(guī)定中位數(shù)5萬元為標(biāo)準(zhǔn),則大多數(shù)人能完成或超額完成,少數(shù)人經(jīng)過努力也能完成.因此把5萬元定為標(biāo)準(zhǔn)比較合理.本題考查的知識點是眾數(shù)、平均數(shù)以及中位數(shù),解題的關(guān)鍵是熟練的掌握眾數(shù)、平均數(shù)以及中位數(shù).16、(1)CF⊥BD,BC=CF+CD;(2)成立,證明詳見解析;(3).【解析】試題分析:(1)①根據(jù)正方形的性質(zhì)得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;②由正方形ADEF的性質(zhì)可推出△DAB≌△FAC,根據(jù)全等三角形的性質(zhì)得到CF=BD,∠ACF=∠ABD,根據(jù)余角的性質(zhì)即可得到結(jié)論;(2)根據(jù)正方形的性質(zhì)得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論(3)根據(jù)等腰直角三角形的性質(zhì)得到BC=AB=4,AH=BC=2,求得DH=3,根據(jù)正方形的性質(zhì)得到AD=DE,∠ADE=90°,根據(jù)矩形的性質(zhì)得到NE=CM,EM=CN,由角的性質(zhì)得到∠ADH=∠DEM,根據(jù)全等三角形的性質(zhì)得到EM=DH=3,DM=AH=2,等量代換得到CN=EM=3,EN=CM=3,根據(jù)等腰直角三角形的性質(zhì)得到CG=BC=4,根據(jù)勾股定理即可得到結(jié)論.試題解析:解:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB與△FAC中,,∴△DAB≌△FAC,∴∠B=∠ACF,∴∠ACB+∠ACF=90°,即CF⊥BD;②△DAB≌△FAC,∴CF=BD,∵BC=BD+CD,∴BC=CF+CD;(2)成立,∵正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB與△FAC中,,∴△DAB≌△FAC,∴∠B=∠ACF,CF=BD∴∠ACB+∠ACF=90°,即CF⊥BD;∵BC=BD+CD,∴BC=CF+CD;(3)解:過A作AH⊥BC于H,過E作EM⊥BD于M,EN⊥CF于N,∵∠BAC=90°,AB=AC,∴BC=AB=4,AH=BC=2,∴CD=BC=1,CH=BC=2,∴DH=3,由(2)證得BC⊥CF,CF=BD=5,∵四邊形ADEF是正方形,∴AD=DE,∠ADE=90°,∵BC⊥CF,EM⊥BD,EN⊥CF,∴四邊形CMEN是矩形,∴NE=CM,EM=CN,∵∠AHD=∠ADC=∠EMD=90°,∴∠ADH+∠EDM=∠EDM+∠DEM=90°,∴∠ADH=∠DEM,在△ADH與△DEM中,,∴△ADH≌△DEM,∴EM=DH=3,DM=AH=2,∴CN=EM=3,EN=CM=3,∵∠ABC=45°,∴∠BGC=45°,∴△BCG是等腰直角三角形,∴CG=BC=4,∴GN=1,∴EG==.考點:四邊形綜合題.17、(1)PB=PQ.證明見解析;(2)PB=PQ.證明見解析.【解析】試題分析:(1)過P作PE⊥BC,PF⊥CD,證明Rt△PQF≌Rt△PBE,即可;(2)證明思路同(1).試題解析:(1)PB=PQ,證明:過P作PE⊥BC,PF⊥CD,∵P,C為正方形對角線AC上的點,∴PC平分∠DCB,∠DCB=90°,∴PF=PE,∴四邊形PECF為正方形,∵∠BPE+∠QPE=90°,∠QPE+∠QPF=90°,∴∠BPE=∠QPF,∴Rt△PQF≌Rt△PBE,∴PB=PQ;(2)PB=PQ,證明:過P作PE⊥BC,PF⊥CD,∵P,C為正方形對角線AC上的點,∴PC平分∠DCB,∠DCB=90°,∴PF=PE,∴四邊形PECF為正方形,∵∠BPF+∠QPF=90°,∠BPF+∠BPE=90°,∴∠BPE=∠QPF,∴Rt△PQF≌Rt△PBE,∴PB=PQ.考點:正方形的判定與性質(zhì);全等三角形的判定與性質(zhì).18、(1)y=,y=x﹣2;(2)1.【解析】
(1)先把A點坐標(biāo)代入y=中求出m得到反比例函數(shù)的解析式是y=,再確定C的坐標(biāo),然后利用待定系數(shù)法求一次函數(shù)解析式;(2)先確定D(2,0),然后根據(jù)三角形面積公式,利用S△AOC=S△OCD+S△AOD進行計算.【詳解】解:(1)把A(﹣1,﹣3)代入y=得m=﹣1×(﹣3)=3,則反比例函數(shù)的解析式是y=,當(dāng)x=3代入y==1,則C的坐標(biāo)是(3,1);把A(﹣1,﹣3),C(3,1)代入y=kx+b得,解得,所以一次函數(shù)的解析式是:y=x﹣2;(2)x=0,x﹣2=0,解得x=2,則D(2,0),所以S△AOC=S△OCD+S△AOD=×2×(1+3)=1.本題考查了反比例函數(shù)與一次函數(shù)的交點問題:求反比例函數(shù)與一次函數(shù)的交點坐標(biāo),把兩個函數(shù)關(guān)系式聯(lián)立成方程組求解,若方程組有解則兩者有交點,方程組無解,則兩者無交點.也考查了待定系數(shù)法求函數(shù)解析式.一、填空題(本大題共5個小題,每小題4分,共20分)19、1【解析】
先根據(jù)含30度的直角三角形三邊的關(guān)系得到AC,再根據(jù)平移的性質(zhì)得AD=BE,ADBE,于是可判斷四邊形ABED為平行四邊形,則根據(jù)平行四邊形的面積公式得到BE的方程,則可計算出BE=1,即得平移距離.【詳解】解:在Rt△ABC中,∵∠ABC=30°,∴AC=AB=5,∵△ABC沿CB向右平移得到△DEF,∴AD=BE,ADBE,∴四邊形ABED為平行四邊形,∵四邊形ABED的面積等于20,∴AC?BE=20,即5BE=20,∴BE=1,即平移距離等于1.故答案為:1.本題考查了含30°角的直角三角形的性質(zhì),平移的性質(zhì):把一個圖形整體沿某一直線方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同;新圖形中的每一點,都是由原圖形中的某一點移動后得到的,這兩個點是對應(yīng)點.連接各組對應(yīng)點的線段平行且相等.也考查了平行四邊形的判定與性質(zhì).20、OB=OD.(答案不唯一)【解析】
AO=OC,有一對對頂角∠AOB與∠COD,添加OB=OD,即得結(jié)論.【詳解】解:∵OA=OC,∠AOB=∠COD(對頂角相等),OB=OD,∴△ABO≌△CDO(SAS).故答案為:OB=OD.(答案不唯一)本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加時注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.21、1【解析】
多邊形的內(nèi)角和可以表示成(n-2)?180°,依此列方程可求解.【詳解】依題意有:(n﹣2)?180°=720°,解得n=1.故答案為:1.本題考查根據(jù)多邊形的內(nèi)角和計算公式求多邊形的邊數(shù),解答時要會根據(jù)公式進行正確運算、變形和數(shù)據(jù)處理.22、或或.【解析】
根據(jù)平行四邊形的性質(zhì),分別以BC、AC、AB為對角線,分三種情況進行分析,即可求得答案.【詳解】解:由平行四邊形的性質(zhì)可知:當(dāng)以BC為對角線時,第四個頂點的坐標(biāo)為D1;當(dāng)以AC為對角線時,第四個頂點的坐標(biāo)為D2;當(dāng)以AB為對角線時,第四個頂點的坐標(biāo)為D3;故答案為:或或.本題考查了平行四邊形的性質(zhì):平行四邊形的對邊平行且相等.解此題的關(guān)鍵是分類討論數(shù)學(xué)思想的運用.23
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學(xué)校清真灶管理制度
- 學(xué)??记谡l管理制度
- 學(xué)生上放學(xué)管理制度
- 學(xué)生洗浴室管理制度
- 安保部查崗管理制度
- 安全生產(chǎn)科管理制度
- 實行會員制管理制度
- 寵物店封閉管理制度
- 客運車安全管理制度
- 室外充電樁管理制度
- 2025年中考第一次模擬考試地理(青海卷)(全解全析)
- 2025年上海青浦新城發(fā)展集團有限公司招聘筆試參考題庫含答案解析
- 私募股權(quán)投資基金(雙GP)合作框架協(xié)議書范本
- 顯微根尖手術(shù)治療
- 電網(wǎng)工程設(shè)備材料信息參考價(2024年第四季度)
- 《水性涂料產(chǎn)品介紹》課件
- 新疆工程勘察設(shè)計計費導(dǎo)則(房屋建筑和市政基礎(chǔ)設(shè)施項目工程設(shè)計部分)
- 2025版國際貿(mào)易大宗商品交易平臺合作合同3篇
- 作家助手簽約標(biāo)準(zhǔn)合同范例
- 建設(shè)項目規(guī)劃設(shè)計研究院2022年人才隊伍建設(shè)年實施方案
評論
0/150
提交評論