




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆河北省石家莊市晉州一中實驗班高二數(shù)學第一學期期末預測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列有關命題的表述中,正確的是()A.命題“若是偶數(shù),則,都是偶數(shù)”的否命題是假命題B.命題“若為正無理數(shù),則也是無理數(shù)”的逆命題是真命題C.命題“若,則”的逆否命題為“若,則”D.若命題“”,“”均為假命題,則,均為假命題2.已知實數(shù)x,y滿足,則的最大值為()A. B.C.2 D.13.已知全集,集合,,則()A. B.C. D.4.若函數(shù)在區(qū)間內(nèi)存在單調(diào)遞增區(qū)間,則實數(shù)的取值范圍是()A. B.C. D.5.兩圓x2+y2+4x-4y=0和x2+y2+2x-12=0的公共弦所在直線的方程為()A.x+2y﹣6=0 B.x﹣3y+5=0C.x﹣2y+6=0 D.x+3y﹣8=06.已知p:,q:,那么p是q的()A.充要條件 B.必要不充分條件C.充分不必要條件 D.既不充分也不必要條件7.在條件下,目標函數(shù)的最大值為2,則的最小值是()A.20 B.40C.60 D.808.函數(shù)在上單調(diào)遞增,則k的取值范圍是()A B.C. D.9.若直線被圓截得的弦長為4,則的最大值是()A. B.C.1 D.210.已知A,B,C是橢圓M:上三點,且A(A在第一象限,B關于原點對稱,,過A作x軸的垂線交橢圓M于點D,交BC于點E,若直線AC與BC的斜率之積為,則()A.橢圓M的離心率為 B.橢圓M的離心率為C. D.11.我國古代數(shù)學論著中有如下敘述:“遠望巍巍塔七層,紅光點點倍加增,共燈二百五十四.”思如下:一座7層塔共掛了254盞燈,且相鄰兩層下一層所掛燈數(shù)是上一層所掛燈數(shù)的2倍.下列結論不正確的是()A.底層塔共掛了128盞燈B.頂層塔共掛了2盞燈C.最下面3層塔所掛燈的總盞數(shù)比最上面3層塔所掛燈的總盞數(shù)多200D.最下面3層塔所掛燈的總盞數(shù)是最上面3層塔所掛燈的總盞數(shù)的16倍12.已知點,是橢圓:的左、右焦點,是的左頂點,點在過且斜率為的直線上,為等腰三角形,且,則的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,,,若,則______.14.的展開式中的常數(shù)項為_______.15.如圖,PD垂直于正方形ABCD所在平面,AB=2,E為PB的中點,cos〈,〉=,若以DA,DC,DP所在直線分別為x,y,z軸建立空間直角坐標系,則點E的坐標為________16.已知,,若,則_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖在四棱錐中,底面是菱形,,平面平面,,,為的中點,是棱上的一點,且.(1)求證:平面;(2)求二面角的余弦值.18.(12分)已知橢圓的左,右頂點分別是,,且,是橢圓上異于,的不同的兩點(1)若,證明:直線必過坐標原點;(2)設點是以為直徑的圓和以為直徑的圓的另一個交點,記線段的中點為,若,求動點的軌跡方程19.(12分)已知數(shù)列的首項,其前n項和為,且滿足.(1)求數(shù)列的通項公式;(2)設,數(shù)列的前n項和為,且,求n.20.(12分)已知橢圓的離心率,左、右焦點分別為、,點在橢圓上,過的直線交橢圓于、兩點.(1)求橢圓的標準方程;(2)求的面積的最大值.21.(12分)證明:是無理數(shù).(我們知道任意一個有理數(shù)都可以寫成形如(m,n互質,)的形式)22.(10分)如圖,直四棱柱中,底面是邊長為的正方形,點在棱上.(1)求證:;(2)從條件①、條件②、條件③這三個條件中選擇兩個作已知,使得平面,并給出證明.條件①:為的中點;條件②:平面;條件③:.(3)在(2)的條件下,求平面與平面夾角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】對于選項A:根據(jù)偶數(shù)性質即可判斷;對于選項B:通過舉例即可判斷,對于選項C:利用逆否命題的概念即可判斷;對于選項D:根據(jù)且、或和非的關系即可判斷.【詳解】選項A:原命題的否命題為:若不是偶數(shù),則,不都是偶數(shù),若,都是偶數(shù),則一定是偶數(shù),從而原命題的否命題為真命題,故A錯誤;選項B:原命題的逆命題:若是無理數(shù),則也為正無理數(shù),當,即為無理數(shù),但是有理數(shù),故B錯誤;選項C:由逆否命題的概念可知,C正確;選項D:由為假命題可知,,至少有一個為假命題,由為假命題可知,和均為假命題,故為假命題,為真命題,故D錯誤.故選:C.2、A【解析】作出不等式對應的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可求出的最大值.【詳解】作出可行域如圖所示,由可知,此直線可用由直線平移得到,求的最大值,即直線的截距最大,當直線過直線的交點時取最大值,即故選:3、A【解析】先求,然后求.【詳解】,,.故選:A4、D【解析】求出函數(shù)的導數(shù),問題轉化為在有解,進而求函數(shù)的最值,即可求出的范圍.【詳解】∵,∴,若在區(qū)間內(nèi)存在單調(diào)遞增區(qū)間,則有解,故,令,則在單調(diào)遞增,,故.故選:D.5、C【解析】兩圓方程相減得出公共弦所在直線的方程.【詳解】兩圓方程相減得,即x﹣2y+6=0則公共弦所在直線的方程為x﹣2y+6=0故選:C6、C【解析】若p成立則q成立且若q成立不能得到p一定成立,p是q充分不必要條件.【詳解】因為>0,<1,所以若p:成立,一定成立,但q:成立,p:不一定成立,所以p是q的充分不必要條件.故選:C.7、C【解析】首先畫出可行域,找到最優(yōu)解,得到關系式作為條件,再去求的最小值.【詳解】畫出的可行域,如下圖:由得由得;由得;目標函數(shù)取最大值時必過N點,則則(當且僅當時等號成立)故選:C8、A【解析】對函數(shù)求導,由于函數(shù)在給定區(qū)間上單調(diào)遞增,故恒成立.【詳解】由題意可得,,,,.故選:A9、A【解析】根據(jù)弦長求得的關系式,結合基本不等式求得的最大值.【詳解】圓的圓心為,半徑為,所以直線過圓心,即,由于為正數(shù),所以,當且僅當時,等號成立.故選:A10、C【解析】設出點,,的坐標,將點,分別代入橢圓方程兩式作差,構造直線和的斜率之積,得到,即可求橢圓的離心率,利用,求出,可知點在軸上,且為的中點,則.【詳解】設,,,則,,,兩式相減并化簡得,即,則,則AB錯誤;∵,,∴,又∵,∴,即,解得,則點在軸上,且為的中點即,則正確.故選:C.11、C【解析】由題設易知是公比為2的等比數(shù)列,應用等比數(shù)列前n項和公式求,結合各選項的描述及等比數(shù)列通項公式、前n項和公式判斷正誤即可.【詳解】從上往下記每層塔所掛燈的盞數(shù)為,則數(shù)列是公比為2的等比數(shù)列,且,解得,所以頂層塔共掛了2盞燈,B正確;底層塔共掛了盞燈,A正確最上面3層塔所掛燈總盞數(shù)為14,最下面3層塔所掛燈的總盞數(shù)為224,C不正確,D正確故選:C.12、D【解析】設,先求出點,得,化簡即得解【詳解】由題意可知橢圓的焦點在軸上,如圖所示,設,則,∵為等腰三角形,且,∴.過作垂直軸于點,則,∴,,即點.∵點在過點且斜率為的直線上,∴,解得,∴.故選:D【點睛】方法點睛:求橢圓的離心率常用的方法有:(1)公式法(求出橢圓的代入離心率的公式即得解);(2)方程法(通過已知找到關于離心率的方程解方程即得解).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題意,由向量坐標表示,列出方程,求出,,即可得出結果.【詳解】因為,,,若,則,解得,所以.故答案為:.【點睛】本題主要考查由向量坐標表示求參數(shù),屬于基礎題型.14、15【解析】先求出二項式展開式的通項公式,然后令的次數(shù)為0,求出的值,從而可得展開式中的常數(shù)項【詳解】二項式展開式的通項公式為,令,得,所以展開式中的常數(shù)項為故答案為:1515、(1,1,1)【解析】設PD=a,則D(0,0,0),A(2,0,0),B(2,2,0),P(0,0,a),E(1,1,),∴=(0,0,a),=(-1,1,)由cos〈,〉=,∴=a·,∴a=2.∴E的坐標為(1,1,1)16、【解析】由題意,,利用向量數(shù)量積的坐標運算可得,然后利用定積分性質可得,原式,最后利用微積分基本定理計算,,利用定積分的幾何意義計算,即可得答案.【詳解】解:因為,,且,所以,解得,所以====.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】(1)推導出PQ⊥AD,從而PQ⊥平面ABCD,連接AC,交BQ于N,連接MN,則AQ∥BC,推導出MN∥PA,由此能證明PA∥平面BMQ(2)連結BD,以Q為坐標原點,以QA、QB、QP分別為x軸,y軸,z軸,建立空間直角坐標系,利用向量法能求出二面角M﹣BQ﹣P的余弦值【詳解】(1)由已知PA=PD,Q為AD的中點,∴PQ⊥AD,又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,PQ?面PAD,∴PQ⊥平面ABCD,連接AC,交BQ于N,連接MN,∵底面ABCD是菱形,∴AQ∥BC,∴△ANQ∽△BCN,,又,∴,∴MN∥PA,又MN?平面BMQ,PA?平面BMQ,∴PA∥平面BMQ(2)連結BD,∵底面底面是菱形,∴△ABD是正三角形,∴由(1)知PQ⊥平面ABCD,∴PQ⊥AD,PQ⊥BQ,以Q為坐標原點,以QA、QB、QP分別為x軸,y軸,z軸,建立空間直角坐標系,則Q(0,0,0),A(1,0,0),B(0,,0),P(0,0,),設平面BMQ的法向量=(x,y,z),∴,由(1)知MN∥PA,∴,∴,取z=1,得,平面BQP的法向量,設二面角M﹣BQ﹣P的平面角為θ,則cosθ=,∴二面角M﹣BQ﹣P的余弦值為18、(1)證明見解析;(2).【解析】(1)設,首先證明,從而可得到,即得到;進而可得到四邊形為平行四邊形;再根據(jù)為的中點,即可證明直線必過坐標原點(2)設出直線的方程,與橢圓方程聯(lián)立,消元,寫韋達;根據(jù)條件可求出直線MN過定點,從而可得到過定點,進而可得到點在以為直徑的圓上運動,從而可求出動點的軌跡方程【小問1詳解】設,則,即因為,,所以因為,所以,所以.同理可證.因為,,所以四邊形為平行四邊形,因為為的中點,所以直線必過坐標原點【小問2詳解】當直線的斜率存在時,設直線的方程為,,聯(lián)立,整理得,則,,.因為,所以,因為,解得或.當時,直線的方程為過點A,不滿足題意,所以舍去;所以直線的方程為,所以直線過定點.當直線的斜率不存在時,因為,所以直線的方程為,經(jīng)驗證,符合題意.故直線過定點.因為為的中點,為的中點,所以過定點.因為垂直平分公共弦,所以點在以為直徑的圓上運動,該圓的半徑,圓心坐標為,故動點的軌跡方程為.19、(1)(2)【解析】(1)由條件得,則利用等差數(shù)列的定義可得答案;(2)利用裂項求和求出,再根據(jù)可求出n.【小問1詳解】由得,從而數(shù)列是以1為首項,1為公差的等差數(shù)列,所以;【小問2詳解】由(1)得,由得又,所以.20、(1)(2)【解析】(1)利用橢圓的離心率、點在橢圓上以及得到的方程組,進而得到橢圓的標準方程;(2)設出直線方程,聯(lián)立直線和橢圓方程,得到關于的一元二次方程,利用根與系數(shù)的關系和三角形的面積公式得到三角形的面積,再利用基本不等式求其最值.【小問1詳解】解:由題可得,且,將點代入橢圓方程,得,解得,,即橢圓方程為;【小問2詳解】解:由(1)可得,,設:,聯(lián)立,消去,得,設,,則,則所以,當且僅當,即時取等號,故的面積的最大值為.21、詳見解析【解析】利用反證法,即可推得矛盾.【詳解】假設有理數(shù),則,則,為整數(shù),的尾數(shù)只能是0,1,4,5,6,9,的尾數(shù)只能是0,1,4,5,6,9,則的尾數(shù)是0,2,8,由得,尾數(shù)為0,則的尾數(shù)是0,而的尾數(shù)為0或5,這與為最簡分數(shù),的最大公約數(shù)是1,相矛盾,所以假設不正確,是無理數(shù).22、(1)證明見解析;(2)答案見解析;(3).【解析】(1)連結,,由直四棱柱的性質及線面垂直的性質可得,再由正方形的性質及線面垂直的判定、性質即可證結論.(2)選條件①③,設,連結,,由中位線的性質、線面垂直的性質可得、,再由線面垂直的判定證明結論;選條件②③,設,連結,由線面平行的性質及平行推論可得,由線面垂直的性質有,再由線面垂直的判定證明結論;(3)構建空間直角坐標系,求平面、平面的法向量,應用空間向量夾角的坐標表示求平面與平面夾角的余弦值.【小問1詳解】連結,,由直四棱柱知
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 幼兒園家長委員會2025健康飲食推廣計劃
- 初三歷史課外輔導計劃
- 成人教育中心教師能力發(fā)展計劃
- 2025年西藏社會治理的心得體會
- 湖南省名校聯(lián)考聯(lián)合體2024-2025學年高一下學期期中考試英語試題(解析版)
- 山東省農(nóng)村金融助推鄉(xiāng)村產(chǎn)業(yè)發(fā)展的對策研究
- 小學數(shù)學教師職后教育計劃
- 2025-2030中國房產(chǎn)規(guī)劃行業(yè)發(fā)展分析及發(fā)展前景與趨勢預測研究報告
- 2025-2030中國快速服務餐廳(QSR)IT行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 礦山微震監(jiān)測震源能量場反演方法研究與應用
- 知識圖譜構建與應用試題及答案
- 湖北省武漢市2025屆高三五月模擬訓練英語試題(含答案無聽力原文及音頻)
- 基因編輯技術的臨床應用與未來發(fā)展方向-洞察闡釋
- 靜脈輸液不良反應應急預案與處理流程
- 《論亞太局勢》課件
- 基于深度學習的日志異常檢測技術研究
- 大學生勞動就業(yè)法律問題解讀(華東理工大學)智慧樹知到見面課、章節(jié)測試、期末考試答案
- 水電站收購分析報告
- 水泥粉助磨劑項目可行性研究報告發(fā)改委立項模板
- 濟南公共交通集團有限公司招聘筆試題庫2025
- 工貿(mào)行業(yè)重大安全生產(chǎn)事故隱患判定標準解讀課件
評論
0/150
提交評論