




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
浙江省臺州市溫嶺市書生中學(xué)2025屆高一上數(shù)學(xué)期末復(fù)習(xí)檢測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.的值等于A. B.C. D.2.函數(shù)f(x)=|x-2|-lnx在定義域內(nèi)零點的個數(shù)為()A.0 B.1C.2 D.33.已知函數(shù)的定義域和值域都是,則()A. B.C.1 D.4.已知,,,則()A. B.C. D.5.函數(shù)f(x)=的零點所在的一個區(qū)間是A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)6.已知函數(shù),若實數(shù)滿足,則實數(shù)的取值范圍是()A. B.C. D.7.已知正方體外接球的表面積為,正方體外接球的表面積為,若這兩個正方體的所有棱長之和為,則的最小值為()A. B.C. D.8.已知函數(shù)則=()A. B.9C. D.9.角是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角10.空間直角坐標(biāo)系中,點關(guān)于平面的對稱點為點,關(guān)于原點的對稱點為點,則間的距離為A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)函數(shù)f(x)的定義域為R,f(x+1)為奇函數(shù),f(x+2)為偶函數(shù),當(dāng)x∈[1,2]時,f(x)=ax2+b.若f(0)+f(3)=6,則f()=____________.12.冪函數(shù)的圖象經(jīng)過點,則=____.13.函數(shù)的最小值是________.14.在函數(shù)的圖像上,有______個橫、縱坐標(biāo)均為整數(shù)的點15.古希臘數(shù)學(xué)家歐幾里得所著《幾何原本》中的“幾何代數(shù)法”,很多代數(shù)公理、定理都能夠通過圖形實現(xiàn)證明,并稱之為“無字證明”.如圖,O為線段中點,C為上異于O的一點,以為直徑作半圓,過點C作的垂線,交半圓于D,連結(jié),過點C作的垂線,垂足為E.設(shè),則圖中線段,線段,線段_______;由該圖形可以得出的大小關(guān)系為___________.16.若是兩個相交平面,則在下列命題中,真命題的序號為________.(寫出所有真命題的序號)①若直線,則在平面內(nèi),一定不存在與直線平行的直線②若直線,則在平面內(nèi),一定存在無數(shù)條直線與直線垂直③若直線,則在平面內(nèi),不一定存在與直線垂直的直線④若直線,則在平面內(nèi),一定存在與直線垂直的直線三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,直三棱柱ABC﹣A1B1C1中,M,N分別為棱AC和A1B1的中點,且AB=BC(1)求證:平面BMN⊥平面ACC1A1;(2)求證:MN∥平面BCC1B118.正數(shù)x,y滿足.(1)求xy的最小值;(2)求x+2y的最小值19.已知函數(shù)在區(qū)間上的最大值為6,(1)求常數(shù)m的值;(2)若,且,求的值.20.已知函數(shù)(Ⅰ)求的最小正周期及對稱軸方程;(Ⅱ)當(dāng)時,求函數(shù)的最大值、最小值,并分別求出使該函數(shù)取得最大值、最小值時的自變量的值.21.(1)計算:(2)已知,求的值
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】因為,所以可以運用兩角差的正弦公式、余弦公式,求出的值.【詳解】,,,故本題選C.【點睛】本題考查了兩角差的正弦公式、余弦公式、以及特殊角的三角函數(shù)值.其時本題還可以這樣解:,.2、C【解析】分別畫出函數(shù)y=lnx(x>0)和y=|x-2|(x>0)的圖像,可得2個交點,故f(x)在定義域中零點個數(shù)為2.3、A【解析】分和,利用指數(shù)函數(shù)的單調(diào)性列方程組求解.【詳解】當(dāng)時,,方程組無解當(dāng)時,,解得故選:A.4、C【解析】求出集合,利用交集的定義可求得集合.【詳解】已知,,,則,因此,.故選:C.5、B【解析】因為函數(shù)f(x)=2+3x在其定義域內(nèi)是遞增的,那么根據(jù)f(-1)=,f(0)=1+0=1>0,那么函數(shù)的零點存在性定理可知,函數(shù)的零點的區(qū)間為(-1,0),選B考點:本試題主要考查了函數(shù)零點的問題的運用點評:解決該試題的關(guān)鍵是利用零點存在性定理,根據(jù)區(qū)間端點值的乘積小于零,得到函數(shù)的零點的區(qū)間6、D【解析】由題可得函數(shù)關(guān)于對稱,且在上單調(diào)遞增,在上單調(diào)遞減,進而可得,即得.【詳解】∵函數(shù),定義域為,又,所以函數(shù)關(guān)于對稱,當(dāng)時,單調(diào)遞增,故函數(shù)單調(diào)遞增,∴函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,由可得,,解得,且.故選:D.7、B【解析】設(shè)正方體的棱長為,正方體的棱長為,然后表示出兩個正方體外接球的表面積,求出化簡變形可得答案【詳解】解:設(shè)正方體的棱長為,正方體的棱長為因為,所以,則因為,所以,因為,所以,故當(dāng)時,取得最小值,且最小值為故選:B8、A【解析】根據(jù)函數(shù)的解析式求解即可.【詳解】,所以,故選A9、B【解析】找到與終邊相等的角,進而判斷出是第幾象限角.【詳解】因為,所以角和角是終邊相同的角,因為角是第二象限角,所以角是第二象限角.故選:B.10、C【解析】分析:求出點關(guān)于平面的對稱點,關(guān)于原點的對稱點,直接利用空間中兩點間的距離公式,即可求解結(jié)果.詳解:在空間直角坐標(biāo)系中,點關(guān)于平面的對稱點,關(guān)于原點的對稱點,則間的距離為,故選C.點睛:本題主要考查了空間直角坐標(biāo)系中點的表示,以及空間中兩點間的距離的計算,著重考查了推理與計算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由f(x+1)為奇函數(shù),f(x+2)為偶函數(shù),可得,,再結(jié)合已知的解析式可得,然后結(jié)合已知可求出,從而可得當(dāng)時,,進而是結(jié)合前面的式子可求得答案【詳解】因為f(x+1)為奇函數(shù),所以的圖象關(guān)于點對稱,所以,且因為f(x+2)為偶函數(shù),所以的圖象關(guān)于直線對稱,,所以,即,所以,即,當(dāng)x∈[1,2]時,f(x)=ax2+b,則,因為,所以,得,因為,所以,所以當(dāng)時,,所以,故答案為:12、2【解析】根據(jù)冪函數(shù)過點,求出解析式,再有解析式求值即可.【詳解】設(shè),則,所以,故,所以.故答案為:13、2【解析】直接利用基本不等式即可得出答案.【詳解】解:因為,所以,當(dāng)且僅當(dāng),即時,取等號,所以函數(shù)的最小值為2.故答案為:2.14、3【解析】由題可得函數(shù)為減函數(shù),利用賦值法結(jié)合條件及函數(shù)的性質(zhì)即得.【詳解】因為,所以函數(shù)在R上單調(diào)遞減,又,,,,且當(dāng)時,,當(dāng)時,令,則,綜上,函數(shù)的圖像上,有3個橫、縱坐標(biāo)均為整數(shù)的點故答案為:3.15、①.②.【解析】利用射影定理求得,結(jié)合圖象判斷出的大小關(guān)系.【詳解】在中,由射影定理得,即.在中,由射影定理得,即根據(jù)圖象可知,即.故答案為:;16、②④【解析】①當(dāng)時,在平面內(nèi)存在與直線平行的直線.②若直線,則平面的交線必與直線垂直,而在平面內(nèi)與平面的交線平行的直線有無數(shù)條,因此在平面內(nèi),一定存在無數(shù)條直線與直線垂直.③當(dāng)直線為平面的交線時,在平面內(nèi)一定存在與直線垂直的直線.④當(dāng)直線為平面的交線,或與交線平行,或垂直于平面時,顯然在平面內(nèi)一定存在與直線垂直的直線.當(dāng)直線為平面斜線時,過直線上一點作直線垂直平面,設(shè)直線在平面上射影為,則平面內(nèi)作直線垂直于,則必有直線垂直于直線,因此在平面內(nèi),一定存在與直線垂直的直線考點:直線與平面平行與垂直關(guān)系三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析【解析】(1)由面面垂直的性質(zhì)定理證明平面,再由面面垂直的判定定理得證面面垂直;(2)取BC中點P,連接B1P和MP,可證MN∥PB1,從而可證線面平行【詳解】(1)因為M為棱AC的中點,且AB=BC,所以BM⊥AC,又因為ABC﹣A1B1C1是直三棱柱,所以AA1⊥平面ABC因為BM?平面ABC,所以AA1⊥BM又因為AC,A1A?平面ACC1A1且AC∩A1A=A,所以BM⊥平面ACC1A1因為BM?平面BMN,所以:平面BMN⊥平面ACC1A1(2)取BC的中點P,連接B1P和MP,因為M、P為棱AC、BC的中點,所以MP∥AB,且MPAB,因為ABC﹣A1B1C1是直三棱柱,所以A1B1∥AB,A1B1=AB因為N為棱A1B1的中點,所以B1N∥BA,且B1NBA;所以B1N∥PM,且B1N=PM;所以MNB1P是平行四邊形,所以MN∥PB1又因為MN?平面BCC,PB1?平面BCC1B1所以MN∥平面BCC1B1【點睛】本題考查證明面面垂直與線面平行,掌握它們的判定定理是解題關(guān)鍵.立體幾何證明中,要由定理得出結(jié)論,必須滿足定理的所有條件,缺一不可.有些不明顯的結(jié)論需要證明,明顯的結(jié)論也要列舉出來,否則證明過程不完整18、(1)36;(2)【解析】(1)由基本不等式可得,再求解即可;(2)由,再求解即可.【詳解】解:(1)由得xy≥36,當(dāng)且僅當(dāng),即時取等號,故xy的最小值為36.(2)由題意可得,當(dāng)且僅當(dāng),即時取等號,故x+2y的最小值為.【點睛】本題考查了基本不等式的應(yīng)用,重點考查了拼湊法構(gòu)造基本不等式,屬中檔題.19、(1);(2)【解析】(1)利用二倍角公式以及輔助角公式可得,再利用三角函數(shù)的性質(zhì)即可求解.(2)代入可得,從而求出,再利用誘導(dǎo)公式即可求解.【詳解】(1),因為,則,所以,解得.(2),即,解得,,,所以,,又,所以.20、(Ⅰ)最小正周期是,對稱軸方程為;(Ⅱ)時,函數(shù)取得最小值,最小值為-2,時,函數(shù)取得最大值,最大值為1.【解析】(Ⅰ)利用二倍角公式及輔助角公式將函數(shù)化簡,再根據(jù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)培訓(xùn)課件分享
- 營銷活動成效評估與優(yōu)化
- 油罐區(qū)安全防護制度
- 茶山承包與茶葉種植病蟲害防治合同
- 廠房物業(yè)服務(wù)及智慧園區(qū)建設(shè)合作協(xié)議
- 智能家居系統(tǒng)采購合同終止及供應(yīng)商更換
- 企業(yè)團體意外險課件
- 體育拉傷考試題及答案
- 常年法律顧問報價單制作與執(zhí)行規(guī)范合同
- 電子設(shè)備搬運工技能培訓(xùn)勞動合同
- 北師大版4四年級下冊數(shù)學(xué)期末復(fù)習(xí)試卷(5套)
- T-CEEMA 0203-2024 風(fēng)力發(fā)電機組狀態(tài)檢修導(dǎo)則
- T-CMBA 024-2024 生物安全二級實驗室運行管理通.用要求
- 血液標(biāo)本采集(靜脈采血)
- TCUWA40055-2023排水管道工程自密實回填材料應(yīng)用技術(shù)規(guī)程
- 老舊住宅小區(qū)綜合整治裝飾裝修工程施工方案
- 小兒腸梗阻護理課件
- 2024-2025學(xué)年譯林版新七年級英語上冊Unit2《Hobbies》單元卷(含答案解析)
- 遼寧省大連市甘井子區(qū)2023-2024學(xué)年七年級下學(xué)期期末生物學(xué)試題(原卷版)
- 5國家機構(gòu)有哪些 第一課時(教學(xué)設(shè)計)部編版道德與法治六年級上冊
- 實驗室生物安全手冊
評論
0/150
提交評論