新高考數(shù)學(xué)二輪復(fù)習(xí)強化練習(xí)專題03 函數(shù)的圖象與應(yīng)用(講)(解析版)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)強化練習(xí)專題03 函數(shù)的圖象與應(yīng)用(講)(解析版)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)強化練習(xí)專題03 函數(shù)的圖象與應(yīng)用(講)(解析版)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)強化練習(xí)專題03 函數(shù)的圖象與應(yīng)用(講)(解析版)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)強化練習(xí)專題03 函數(shù)的圖象與應(yīng)用(講)(解析版)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

第一篇熱點、難點突破篇專題03函數(shù)的圖象與應(yīng)用(講)真題體驗感悟高考1.(2022·全國·高考真題(文))如圖是下列四個函數(shù)中的某個函數(shù)在區(qū)間SKIPIF1<0的大致圖像,則該函數(shù)是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由函數(shù)圖像的特征結(jié)合函數(shù)的性質(zhì)逐項排除即可得解.【詳解】設(shè)SKIPIF1<0,則SKIPIF1<0,故排除B;設(shè)SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,故排除C;設(shè)SKIPIF1<0,則SKIPIF1<0,故排除D.故選:A.2.(2022·全國·高考真題(理))函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0的圖象大致為(

)A. B.C. D.【答案】A【分析】由函數(shù)的奇偶性結(jié)合指數(shù)函數(shù)、三角函數(shù)的性質(zhì)逐項排除即可得解.【詳解】令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0為奇函數(shù),排除BD;又當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,排除C.故選:A.3.(2021·浙江·高考真題)已知函數(shù)SKIPIF1<0,則圖象為如圖的函數(shù)可能是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】由函數(shù)的奇偶性可排除A、B,結(jié)合導(dǎo)數(shù)判斷函數(shù)的單調(diào)性可判斷C,即可得解.【詳解】對于A,SKIPIF1<0,該函數(shù)為非奇非偶函數(shù),與函數(shù)圖象不符,排除A;對于B,SKIPIF1<0,該函數(shù)為非奇非偶函數(shù),與函數(shù)圖象不符,排除B;對于C,SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,與圖象不符,排除C.故選:D.4.(2020·天津·高考真題)已知函數(shù)SKIPIF1<0若函數(shù)SKIPIF1<0恰有4個零點,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】由SKIPIF1<0,結(jié)合已知,將問題轉(zhuǎn)化為SKIPIF1<0與SKIPIF1<0有SKIPIF1<0個不同交點,分SKIPIF1<0三種情況,數(shù)形結(jié)合討論即可得到答案.【詳解】注意到SKIPIF1<0,所以要使SKIPIF1<0恰有4個零點,只需方程SKIPIF1<0恰有3個實根即可,令SKIPIF1<0SKIPIF1<0,即SKIPIF1<0與SKIPIF1<0的圖象有SKIPIF1<0個不同交點.因為SKIPIF1<0,當(dāng)SKIPIF1<0時,此時SKIPIF1<0,如圖1,SKIPIF1<0與SKIPIF1<0有SKIPIF1<0個不同交點,不滿足題意;當(dāng)SKIPIF1<0時,如圖2,此時SKIPIF1<0與SKIPIF1<0恒有SKIPIF1<0個不同交點,滿足題意;當(dāng)SKIPIF1<0時,如圖3,當(dāng)SKIPIF1<0與SKIPIF1<0相切時,聯(lián)立方程得SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,解得SKIPIF1<0(負(fù)值舍去),所以SKIPIF1<0.綜上,SKIPIF1<0的取值范圍為SKIPIF1<0.故選:D.

5.(2019·浙江·高考真題)已知SKIPIF1<0,函數(shù)SKIPIF1<0,若存在SKIPIF1<0,使得SKIPIF1<0,則實數(shù)SKIPIF1<0的最大值是____.【答案】SKIPIF1<0【分析】本題主要考查含參絕對值不等式、函數(shù)方程思想及數(shù)形結(jié)合思想,屬于能力型考題.從研究SKIPIF1<0入手,令SKIPIF1<0,從而使問題加以轉(zhuǎn)化,通過繪制函數(shù)圖象,觀察得解.【詳解】使得SKIPIF1<0,使得令SKIPIF1<0,則原不等式轉(zhuǎn)化為存在SKIPIF1<0,由折線函數(shù),如圖只需SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0的最大值是SKIPIF1<0總結(jié)規(guī)律預(yù)測考向(一)規(guī)律與預(yù)測高考對此部分內(nèi)容的命題多集中于函數(shù)圖象的辨識、函數(shù)圖象的變換、主要有由函數(shù)的性質(zhì)及解析式選圖;由函數(shù)的圖象來研究函數(shù)的性質(zhì)、圖象的變換、數(shù)形結(jié)合解決不等式、方程問題等.常常與導(dǎo)數(shù)結(jié)合考查.應(yīng)特別注意兩圖象交點、函數(shù)性質(zhì)、方程解的個數(shù)、不等式的解集等方面的應(yīng)用.關(guān)注抽象函數(shù)問題出現(xiàn).(二)本專題考向展示考點突破典例分析考向一做函數(shù)的圖象【核心知識】作函數(shù)圖象有兩種基本方法:一是描點法;二是圖象變換法,其中圖象變換有平移變換、伸縮變換、對稱變換.描點法步驟:(1)確定函數(shù)的定義域;(2)化簡函數(shù)解析式;(3)討論函數(shù)的性質(zhì)(奇偶性、單調(diào)性、周期性、對稱性等);(4)列表(尤其注意特殊點、零點、最大值點、最小值點、與坐標(biāo)軸的交點等),描點,連線.【典例分析】典例1.(全國·高考真題(文))畫出函數(shù)SKIPIF1<0的圖象.【答案】見解析【分析】由SKIPIF1<0的圖象與函數(shù)圖象平移變換求解,【詳解】由SKIPIF1<0圖象向左平移一個單位即可,典例2.(2022·陜西·西安市鄠邑區(qū)第二中學(xué)高三階段練習(xí))設(shè)函數(shù)SKIPIF1<0.(1)證明:函數(shù)SKIPIF1<0是偶函數(shù);(2)畫出這個函數(shù)的圖象;【答案】(1)證明見解析(2)答案見解析【分析】(1)根據(jù)函數(shù)的奇偶性證得結(jié)論成立.(2)將SKIPIF1<0寫成分段函數(shù)的形式,從而畫出SKIPIF1<0的圖象.【詳解】(1)證明:因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0為偶函數(shù).(2)SKIPIF1<0,由此畫出SKIPIF1<0的圖象如下圖所示:典例3.(2021·全國·高考真題(文))已知函數(shù)SKIPIF1<0.(1)畫出SKIPIF1<0和SKIPIF1<0的圖像;(2)若SKIPIF1<0,求a的取值范圍.【答案】(1)圖像見解析;(2)SKIPIF1<0【分析】(1)分段去絕對值即可畫出圖像;(2)根據(jù)函數(shù)圖像數(shù)形結(jié)和可得需將SKIPIF1<0向左平移可滿足同角,求得SKIPIF1<0過SKIPIF1<0時SKIPIF1<0的值可求.【詳解】(1)可得SKIPIF1<0,畫出圖像如下:SKIPIF1<0,畫出函數(shù)圖像如下:(2)SKIPIF1<0,如圖,在同一個坐標(biāo)系里畫出SKIPIF1<0圖像,SKIPIF1<0是SKIPIF1<0平移了SKIPIF1<0個單位得到,則要使SKIPIF1<0,需將SKIPIF1<0向左平移,即SKIPIF1<0,當(dāng)SKIPIF1<0過SKIPIF1<0時,SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),則數(shù)形結(jié)合可得需至少將SKIPIF1<0向左平移SKIPIF1<0個單位,SKIPIF1<0.【總結(jié)提升】函數(shù)圖象的畫法(1)直接法:當(dāng)函數(shù)表達式(或變形后的表達式)是熟悉的基本函數(shù)時,就可根據(jù)這些函數(shù)的特征描出圖象的關(guān)鍵點直接作出.(2)轉(zhuǎn)化法:含有絕對值符號的函數(shù),可去掉絕對值符號,轉(zhuǎn)化為分段函數(shù)來畫圖象..考向二基本初等函數(shù)的圖象【核心知識】1.指數(shù)函數(shù)y=ax(a>0,a≠1)與對數(shù)函數(shù)y=logax(a>0,a≠1)互為反函數(shù),其圖象關(guān)于y=x對稱,它們的圖象和性質(zhì)分0<a<1,a>1兩種情況,著重關(guān)注兩函數(shù)圖象的異同.2.冪函數(shù)y=xα的圖象,主要掌握α=1,2,3,SKIPIF1<0,-1五種情況.【典例分析】典例4.(2020·山東·高考真題)已知函數(shù)SKIPIF1<0是偶函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0,則該函數(shù)在SKIPIF1<0上的圖像大致是(

)A. B.C. D.【答案】B【分析】根據(jù)偶函數(shù),指數(shù)函數(shù)的知識確定正確選項.【詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上遞減,SKIPIF1<0是偶函數(shù),所以SKIPIF1<0在SKIPIF1<0上遞增.注意到SKIPIF1<0,所以B選項符合.故選:B典例5.(2021·四川高三三模(理))函數(shù)SKIPIF1<0及SKIPIF1<0,則SKIPIF1<0及SKIPIF1<0的圖象可能為()A. B.C. D.【答案】B【解析】討論SKIPIF1<0、SKIPIF1<0確定SKIPIF1<0的單調(diào)性和定義域、SKIPIF1<0在y軸上的截距,再討論SKIPIF1<0、SKIPIF1<0,結(jié)合SKIPIF1<0的單調(diào)性,即可確定函數(shù)的可能圖象.【詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞減,SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0單調(diào)遞增且定義域為SKIPIF1<0,此時SKIPIF1<0與y軸的截距在SKIPIF1<0上,排除C.當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞減,SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0單調(diào)遞減且定義域為SKIPIF1<0,此時SKIPIF1<0與y軸的截距在SKIPIF1<0上.∴當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞減,故只有B符合要求.故選:B.典例6.(2019·浙江·高考真題)在同一直角坐標(biāo)系中,函數(shù)SKIPIF1<0且SKIPIF1<0的圖象可能是A. B.C. D.【答案】D【解析】本題通過討論SKIPIF1<0的不同取值情況,分別討論本題指數(shù)函數(shù)、對數(shù)函數(shù)的圖象和,結(jié)合選項,判斷得出正確結(jié)論.題目不難,注重重要知識、基礎(chǔ)知識、邏輯推理能力的考查.【詳解】當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0過定點SKIPIF1<0且單調(diào)遞減,則函數(shù)SKIPIF1<0過定點SKIPIF1<0且單調(diào)遞增,函數(shù)SKIPIF1<0過定點SKIPIF1<0且單調(diào)遞減,D選項符合;當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0過定點SKIPIF1<0且單調(diào)遞增,則函數(shù)SKIPIF1<0過定點SKIPIF1<0且單調(diào)遞減,函數(shù)SKIPIF1<0過定點SKIPIF1<0且單調(diào)遞增,各選項均不符合.綜上,選D.考向三函數(shù)圖象的變換及應(yīng)用【核心知識】利用圖象變換法作函數(shù)的圖象(1)平移變換(2)對稱變換y=f(x)的圖象eq\o(→,\s\up7(關(guān)于x軸對稱))y=-f(x)的圖象;y=f(x)的圖象eq\o(→,\s\up7(關(guān)于y軸對稱))y=f(-x)的圖象;y=f(x)的圖象eq\o(→,\s\up7(關(guān)于原點對稱))y=-f(-x)的圖象;(3)伸縮變換y=f(x)eq\o(→,\s\up7(縱坐標(biāo)不變),\s\do5(各點橫坐標(biāo)變?yōu)樵瓉淼腬f(1,a)(a>0)倍))y=f(ax).y=f(x)eq\o(→,\s\up7(橫坐標(biāo)不變),\s\do5(各點縱坐標(biāo)變?yōu)樵瓉淼腁(A>0)倍))y=Af(x).(4)翻轉(zhuǎn)變換y=f(x)的圖象eq\o(→,\s\up7(x軸下方部分翻折到上方),\s\do5(x軸及上方部分不變))y=|f(x)|的圖象;y=f(x)的圖象eq\o(→,\s\up7(y軸右側(cè)部分翻折到左側(cè)),\s\do5(原y軸左側(cè)部分去掉,右側(cè)不變))y=f(|x|)的圖象.典例7.(全國·高考真題(文))若函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,則函數(shù)SKIPIF1<0與SKIPIF1<0的圖象關(guān)于(

)A.直線SKIPIF1<0對稱 B.直線SKIPIF1<0對稱C.直線SKIPIF1<0對稱 D.直線SKIPIF1<0對稱【答案】C【分析】根據(jù)函數(shù)圖象的變換規(guī)律,結(jié)合SKIPIF1<0與SKIPIF1<0的圖象的關(guān)系即得.【詳解】因為函數(shù)SKIPIF1<0的圖象是SKIPIF1<0的圖象向右平移1個單位得到的,SKIPIF1<0的圖象是SKIPIF1<0的圖象也向右平移1個單位得到的;又因為SKIPIF1<0與SKIPIF1<0的圖象是關(guān)于SKIPIF1<0軸(直線SKIPIF1<0)對稱,所以函數(shù)SKIPIF1<0與SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱.故選:SKIPIF1<0.典例8.(2021·北京高三二模)已知指數(shù)函數(shù)SKIPIF1<0,將函數(shù)SKIPIF1<0的圖象上的每個點的橫坐標(biāo)不變,縱坐標(biāo)擴大為原來的SKIPIF1<0倍,得到函數(shù)SKIPIF1<0的圖象,再將SKIPIF1<0的圖象向右平移SKIPIF1<0個單位長度,所得圖象恰好與函數(shù)SKIPIF1<0的圖象重合,則a的值是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】根據(jù)函數(shù)圖象變換求出變換后的函數(shù)解析式,結(jié)合已知條件可得出關(guān)于實數(shù)SKIPIF1<0的等式,進而可求得實數(shù)SKIPIF1<0的值.【詳解】由題意可得SKIPIF1<0,再將SKIPIF1<0的圖象向右平移SKIPIF1<0個單位長度,得到函數(shù)SKIPIF1<0,又因為SKIPIF1<0,所以,SKIPIF1<0,整理可得SKIPIF1<0,因為SKIPIF1<0且SKIPIF1<0,解得SKIPIF1<0.故選:D.典例9.(2022·河南·高三階段練習(xí)(文))設(shè)函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,且滿足SKIPIF1<0是偶函數(shù),SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則下列說法不正確的是(

)A.SKIPIF1<0B.當(dāng)SKIPIF1<0時,SKIPIF1<0的取值范圍為SKIPIF1<0C.SKIPIF1<0為奇函數(shù)D.方程SKIPIF1<0僅有5個不同實數(shù)解【答案】D【分析】由已知條件可得函數(shù)的對稱中心及對稱軸,利用對稱中心和對稱軸將已知區(qū)間圖象進行多次對稱變換,可得函數(shù)SKIPIF1<0的圖象,依據(jù)圖象對各個選項進行判斷即可.【詳解】∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0,∴函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0的圖象如圖:∵SKIPIF1<0是偶函數(shù),∴SKIPIF1<0,即SKIPIF1<0∴SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱,SKIPIF1<0在區(qū)間SKIPIF1<0的圖象如圖:∵SKIPIF1<0,∴將SKIPIF1<0中的SKIPIF1<0替換為SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0∴SKIPIF1<0的圖象關(guān)于點SKIPIF1<0對稱,SKIPIF1<0在區(qū)間SKIPIF1<0的圖象如圖:由函數(shù)圖象的對稱軸直線SKIPIF1<0和對稱中心SKIPIF1<0進行多次對稱變換,可得函數(shù)圖象如圖:由函數(shù)圖象可知,SKIPIF1<0是周期為SKIPIF1<0的周期函數(shù),函數(shù)SKIPIF1<0的對稱軸為直線SKIPIF1<0(SKIPIF1<0Z),對稱中心為點SKIPIF1<0(SKIPIF1<0Z),另外,函數(shù)的周期性還可以通過以下方法進行證明:將SKIPIF1<0中的SKIPIF1<0替換為SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,由已知有SKIPIF1<0,∴SKIPIF1<0將SKIPIF1<0中SKIPIF1<0分別替換為SKIPIF1<0和SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0和SKIPIF1<0,即SKIPIF1<0SKIPIF1<0SKIPIF1<0∴SKIPIF1<0將SKIPIF1<0中SKIPIF1<0替換為SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0是周期為SKIPIF1<0的周期函數(shù).對于A,SKIPIF1<0,故A正確;對于B,當(dāng)SKIPIF1<0時,由圖象可知其值域為SKIPIF1<0,故B正確;對于C,由圖象知,其圖象的對稱中心為點SKIPIF1<0(SKIPIF1<0Z),當(dāng)SKIPIF1<0時,點SKIPIF1<0為SKIPIF1<0圖象的對稱中心,因此將SKIPIF1<0的圖象向左平移SKIPIF1<0個單位長度,所得函數(shù)SKIPIF1<0為奇函數(shù),故C正確;對于D,將函數(shù)SKIPIF1<0的圖象向左平移SKIPIF1<0個單位長度,再將SKIPIF1<0軸下方的圖象翻折至SKIPIF1<0軸上方,得到函數(shù)SKIPIF1<0的圖象,易知SKIPIF1<0的圖象過點SKIPIF1<0如圖,SKIPIF1<0的圖象與SKIPIF1<0的圖象有6個交點,所以方程SKIPIF1<0有6個不同實數(shù)解,故D錯誤.故選:D.【規(guī)律方法】圖象變換法常用的有平移變換、伸縮變換和對稱變換.尤其注意y=f(x)與y=f(-x),y=-f(x),y=-f(-x),y=f(|x|),y=|f(x)|及y=af(x)+b的相互關(guān)系.考向四函數(shù)圖象的識別【核心知識】識別函數(shù)圖象的方法基本方法有:(1)直接法(直接求出函數(shù)的解析式并作出其圖象);(2)特例排除法(其中用特殊點法破解函數(shù)圖象問題需尋找特殊的點,即根據(jù)已知函數(shù)的圖象或已知函數(shù)的解析式,取特殊點,判斷各選項的圖象是否經(jīng)過該特殊點);(3)性質(zhì)驗證法.【典例分析】典例10.(2022·天津·高考真題)函數(shù)SKIPIF1<0的圖像為(

)A. B.C. D.【答案】D【分析】分析函數(shù)SKIPIF1<0的定義域、奇偶性、單調(diào)性及其在SKIPIF1<0上的函數(shù)值符號,結(jié)合排除法可得出合適的選項.【詳解】函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,且SKIPIF1<0,函數(shù)SKIPIF1<0為奇函數(shù),A選項錯誤;又當(dāng)SKIPIF1<0時,SKIPIF1<0,C選項錯誤;當(dāng)SKIPIF1<0時,SKIPIF1<0函數(shù)單調(diào)遞增,故B選項錯誤;故選:D.典例11.(2021·天津·高考真題)函數(shù)SKIPIF1<0的圖像大致為(

)A. B.C. D.【答案】B【分析】由函數(shù)為偶函數(shù)可排除AC,再由當(dāng)SKIPIF1<0時,SKIPIF1<0,排除D,即可得解.【詳解】設(shè)SKIPIF1<0,則函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,關(guān)于原點對稱,又SKIPIF1<0,所以函數(shù)SKIPIF1<0為偶函數(shù),排除AC;當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,排除D.故選:B.典例12.(2022·四川綿陽·一模(理))函數(shù)SKIPIF1<0的圖象大致為(

)A. B.C. D.【答案】D【分析】先利用導(dǎo)函數(shù)研究SKIPIF1<0上的單調(diào)性,得到SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,進而研究SKIPIF1<0上的單調(diào)性,得到在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,從而選出正確答案.【詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0在SKIPIF1<0處取得極小值,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,顯然SKIPIF1<0,綜上:只有D選項滿足要求.故選:D【總結(jié)提升】識圖的三種常用方法1.抓住函數(shù)的性質(zhì),定性分析:(1)由函數(shù)的定義域,判斷圖象的左、右位置,由函數(shù)的值域,判斷圖象的上、下位置;(2)由函數(shù)的單調(diào)性,判斷圖象的變化趨勢;(3)由函數(shù)的奇偶性,判斷圖象的對稱性;(4)由函數(shù)的周期性,判斷圖象的循環(huán)往復(fù).2.抓住函數(shù)的特征,定量計算:從函數(shù)的特征點,利用特征點、特殊值的計算分析解決問題.3.根據(jù)實際背景、圖形判斷函數(shù)圖象的方法:(1)根據(jù)題目所給條件確定函數(shù)解析式,從而判斷函數(shù)圖象(定量分析);(2)根據(jù)自變量取不同值時函數(shù)值的變化、增減速度等判斷函數(shù)圖象(定性分析).考向五由函數(shù)圖象確定解析式【核心知識】從圖象與軸的交點及左、右、上、下分布范圍、變化趨勢、對稱性等方面找準(zhǔn)解析式與圖象的對應(yīng)關(guān)系.【典例分析】典例13.(2022·重慶·高三階段練習(xí))已知函數(shù)SKIPIF1<0的圖象如圖1所示,則圖2所表示的函數(shù)是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根函數(shù)圖象判斷兩個函數(shù)見的位置關(guān)系,進而可得解.【詳解】由圖知,將SKIPIF1<0的圖象關(guān)于SKIPIF1<0軸對稱后再向下平移SKIPIF1<0個單位即得圖2,又將SKIPIF1<0的圖象關(guān)于SKIPIF1<0軸對稱后可得函數(shù)SKIPIF1<0,再向下平移SKIPIF1<0個單位,可得SKIPIF1<0所以解析式為SKIPIF1<0,故選:C.典例14.(2022·浙江·模擬預(yù)測)已知SKIPIF1<0,若SKIPIF1<0的圖像如圖所示,SKIPIF1<0的解析式可能是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)函數(shù)定義域和奇偶性分析判斷.【詳解】對A:SKIPIF1<0的定義域為SKIPIF1<0,且為奇函數(shù),與圖像符合;對B:SKIPIF1<0的定義域為SKIPIF1<0,且為偶函數(shù),與圖像不符合,B錯誤;對C:SKIPIF1<0的定義域為SKIPIF1<0,且為奇函數(shù),與圖象不符合,C錯誤;對D:SKIPIF1<0的定義域為SKIPIF1<0,且為偶函數(shù),與圖像不符合,D錯誤;故選:A.典例15.(2021·福建高三三模)若函數(shù)SKIPIF1<0的大致圖象如圖所示,則SKIPIF1<0的解析式可能是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】利用排除法,取特殊值分析判斷即可得答案【詳解】解:由圖可知,當(dāng)SKIPIF1<0時,SKIPIF1<0,取SKIPIF1<0,則對于B,SKIPIF1<0,所以排除B,對于D,SKIPIF1<0,所以排除D,當(dāng)SKIPIF1<0時,對于A,SKIPIF1<0,此函數(shù)是由SKIPIF1<0向右平移1個單位,再向上平移1個單位,所以SKIPIF1<0時,SKIPIF1<0恒成立,而圖中,當(dāng)SKIPIF1<0時,SKIPIF1<0可以小于1,所以排除A,故選:C【總結(jié)提升】1.根據(jù)已知或作出的函數(shù)圖象,從最高點、最低點,分析函數(shù)的最值;2.從圖象的對稱性,分析函數(shù)的奇偶性;3.從圖象的走向趨勢,分析函數(shù)的單調(diào)性、周期性;4.從圖象與x軸的交點情況,分析函數(shù)的零點.考向六函數(shù)圖象與函數(shù)的零點【核心知識】在研究函數(shù)性質(zhì)特別是單調(diào)性、最值、零點時,要注意用好其與圖象的關(guān)系,結(jié)合圖象研究.函數(shù)圖象的應(yīng)用主要體現(xiàn)為數(shù)形結(jié)合思想,借助于函數(shù)圖象的特點和變化規(guī)律,求解有關(guān)不等式恒成立、最值、交點、方程的根等問題.求解兩個函數(shù)圖象在給定區(qū)間上的交點個數(shù)問題時,可以先畫出已知函數(shù)完整的圖象,再觀察.【典例分析】典例16.(2022·湖北·高三期中)己知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的零點個數(shù)是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】確定函數(shù)SKIPIF1<0的值域,利用換元法令SKIPIF1<0,則SKIPIF1<0,則將函數(shù)SKIPIF1<0的零點問題轉(zhuǎn)化為函數(shù)SKIPIF1<0的圖象的交點問題,作函數(shù)SKIPIF1<0圖象,確定其交點以及其橫坐標(biāo)范圍,再結(jié)合SKIPIF1<0的圖象,即可確定SKIPIF1<0的零點個數(shù).【詳解】已知SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,作出其圖象如圖示:可知SKIPIF1<0值域為SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,則函數(shù)SKIPIF1<0的零點問題即為函數(shù)SKIPIF1<0的圖象的交點問題,而SKIPIF1<0,作出函數(shù)SKIPIF1<0的圖象如圖示:可知:SKIPIF1<0的圖象有兩個交點,橫坐標(biāo)分別在SKIPIF1<0之間,不妨設(shè)交點橫坐標(biāo)為SKIPIF1<0,當(dāng)SKIPIF1<0時,由SKIPIF1<0圖象和直線SKIPIF1<0可知,二者有兩個交點,即此時SKIPIF1<0有兩個零點;當(dāng)SKIPIF1<0時,由SKIPIF1<0圖象和直線SKIPIF1<0可知,二者有3個交點,即此時SKIPIF1<0有3個零點,故函數(shù)SKIPIF1<0的零點個數(shù)是5,故選:B.典例17.【多選題】(2022·湖北·丹江口市第一中學(xué)模擬預(yù)測)已知函數(shù)SKIPIF1<0,設(shè)函數(shù)SKIPIF1<0,則下列說法正確的是(

)A.若SKIPIF1<0有4個零點,則SKIPIF1<0B.存在實數(shù)t,使得SKIPIF1<0有5個零點C.當(dāng)SKIPIF1<0有6個零點時.記零點分別為SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0D.對任意SKIPIF1<0恒有2個零點【答案】BC【分析】由SKIPIF1<0可得SKIPIF1<0或SKIPIF1<0,作函數(shù)SKIPIF1<0的圖象,觀察圖象判斷A,B,D,由條件觀察圖象確定SKIPIF1<0的關(guān)系,由此判斷C,【詳解】SKIPIF1<0的大致圖像如圖所示,令SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0.若SKIPIF1<0有4個零點,則實數(shù)t的取值范圍為SKIPIF1<0或SKIPIF1<0或SKIPIF1<0,故A項錯誤;由圖可知,當(dāng)SKIPIF1<0時,SKIPIF1<0有5個零點,故B項正確;當(dāng)SKIPIF1<0有6個零點時,則SKIPIF1<0,所以SKIPIF1<0,即有SKIPIF1<0,故C項正確;當(dāng)SKIPIF1<0時,SKIPIF1<0有4個零點,故D項錯誤,故選:BC.典例18.(2019·江蘇·高考真題)設(shè)SKIPIF1<0是定義在SKIPIF1<0上的兩個周期函數(shù),SKIPIF1<0的周期為4,SKIPIF1<0的周期為2,且SKIPIF1<0是奇函數(shù).當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0.若在區(qū)間SKIPIF1<0上,關(guān)于SKIPIF1<0的方程SKIPIF1<0有8個不同的實數(shù)根,則SKIPIF1<0的取值范圍是_____.【答案】SKIPIF1<0.【分析】分別考查函數(shù)SKIPIF1<0和函數(shù)SKIPIF1<0圖像的性質(zhì),考查臨界條件確定k的取值范圍即可.【詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0即SKIPIF1<0又SKIPIF1<0為奇函數(shù),其圖象關(guān)于原點對稱,其周期為SKIPIF1<0,如圖,函數(shù)SKIPIF1<0與SKIPIF1<0的圖象,要使SKIPIF1<0在SKIPIF1<0上有SKIPIF1<0個實根,只需二者圖象有SKIPIF1<0個交點即可.

當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0與SKIPIF1<0的圖象有SKIPIF1<0個交點;當(dāng)SKIPIF1<0時,SKIPIF1<0的圖象為恒過點SKIPIF1<0的直線,只需函數(shù)SKIPIF1<0與SKIPIF1<0的圖象有SKIPIF1<0個交點.當(dāng)SKIPIF1<0與SKIPIF1<0圖象相切時,圓心SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0,函數(shù)SKIPIF1<0與SKIPIF1<0的圖象有SKIPIF1<0個交點;當(dāng)SKIPIF1<0過點SKIPIF1<0時,函數(shù)SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論