




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Lesson8Top-downSoCDesignMethodology
(第八課自頂向下的SoC設(shè)計方法學(xué))
Vocabulary(詞匯)ImportantSentences(重點句)QuestionsandAnswers(問答)Problems(問題)
Deepsub-microneffectscomplicatedesignclosureforverylargedesigns.Top-downhierarchicaldesignmethodologycombinedwithphysicalprototypingincreasesdesignproductivityandrestoresschedulepredictability.Inthispaperatop-downhierarchicalflowwillbediscussedanduseofphysicalprototypingtopredicttheperformanceandphysicalcharacteristicsofthefinalphysicalimplementationwillbeexplained.1Top-DownSoCDesignMethodology
System-on-Chip(SoC)designshavebecomeoneofthemaindriversofthesemiconductortechnologyinrecentyears.Multi-milliongatedesignswithmultiplethirdpartyintellectualproperty(IP)coresarecommonplace.SoCdesignersemployIPreusetoimprovedesignproductivity.Previousdesignsdonein-houseorthirdpartydesignscanbeusedasIPinthecurrentdesign.WhileemployingIPcutsdevelopmentcostsandtime,integrationcomplexityincreases.ThisisoneofthemainreasonswhySoCdesignsareimplementedwithhierarchicaltop-downdesignflows(Fig.1).
Theseflowshelptomanagethedifferentandconflictingrequirementsofincreasingdesignsize,deep-submicroneffects(DSM)andthenecessityforshorterandpredictableimplementationtimes.
Hierarchicalmethodologiesallowmultipleteamstoworkondifferentpartsofthedesignconcurrentlyandindependently.This“divideandconquer”approachreducesthecomplexityofthedesignproblemforeachdesignteamandreducesthetimetomarket.FortheSoCdesigns,whicharebuiltfromindependentfunctionblocks,thesecapabilitiesarekeyadvantagesasthefinalimplementationofcomplexchipscanbealengthyprocessandparallelizationcansavevaluabletime.
HierarchicaldesignstylesalsoallowformuchfasterandeasierlateECO’s.Functionalchangesmaybelocalizedtoasingleblockleavingtheremainderofthedesignunaffected.Thislocalizationresultsinfaster,easierECO’s.Anotherreasonforhierarchyistoovercomethecapacitylimitationsofdesigntools.Hierarchicaldesignflowsarescalabletohandledesignscontainingupwardsof100milliongates.
Inadditiontothecomplexitiesthatarearesultoflargedesignsize,deepsub-microneffectsaddtointegrationcomplexitiesandcauselatestagesurprisesandlargeloopsduringthedesigncycle.Fig.1Atop-downhierarchicaldesignmethodology
Indeepsub-microntechnologies,wires,power,routabilityandmanufacturabilityhavetobeconsideredearlyinthedesigncycle.Physicalprototypingprovidesearlyfeedbackintermsofdesignclosureandhelpsvalidatethecorrectnessofdesigndecisions.Physicalprototypingshouldaccuratelypredictthecharacteristicsofthefinalphysicalimplementation.Thiscanbeaccomplishedbyperformingcellplacementandglobalroutingatanappropriatelevelofgranularityneededtoensurethattheprototypecorrelatestothefinalimplementationwithinaspecifiedtolerance.[1]
Traditional,top-downSoCdesignsrelyontheassumptionthatthebudgetingperformedatthechip-levelneednotberevisedaftertheblocksareimplemented.However,unlessveryconservativebudgetsareused,itisimpossibletopredictupfrontwhetherthefinalblockimplementationswillmeetallconstraints.[2]Also,itisdifficulttoadjustthebudgetingifwecannotcapturethephysicalproperties(e.g.,driverstrength,parasitics,currentdrain,etc)thatareobservedattheblockandchipboundaries.
Atop-downhierarchicaldesignmethodologyshouldthereforebecombinedwithphysicalprototypingtoenhancedesignproductivityandrestoreschedulepredictability.Inthispaper,atop-downhierarchicalblock-basedflowwillbediscussedanduseofphysicalprototypingtopredicttheperformanceandphysicalcharacteristicsofthefinalphysicalimplementationwillbeexplained.2HierarchicalSoCDesignFlow
Thecomponentsofapredictabletop-downhierarchicalflowaredesignplanning,physicalprototyping,andimplementation.Atthedesignplanningstage,chiptopography,area,numberofchiplevelpartitionsandtimingbudgetsaredetermined.Duringphysicalprototyping,thedesignplanningresultsarevalidatedforeachblockandforthetop-level.Ifnecessary,correctiveactionistakenbygoingbacktodesignplanningandprogressivelyrefiningthedesign.
Oncephysicalprototypingresultsaresatisfactory,implementationcancommenceconcurrentlyforeachblockandforthetop-level,withtheassurancethatdesign-planningdecisionsarecorrectandimplementationwillbecompletedwithoutanylatesurprises.Top-downplanningandbottom-upprototypingisthemostpredictablewaytoachieveclosureonlargeSoCdesigns.
Designplanningconstitutesanimportantportionofthetop-downhierarchicaldesignflow(Fig.2).TheSoCdesignerevaluatestradeoffswithrespecttotiming,area,andpowerduringdesignplanning.Atthisstage,variousIPcoresfromdifferentvendorsareintegratedintothedesignalongwithcustomlogic.TheIPmaybeprovidedasRTLcode,gatelevelnetlists,orfullyimplementedhardmacros.DecisionsregardingchoicesofdifferentimplementationsofthesameIP,chipandblockaspectratio,budgetingoftop-levelconstraints,standardcellutilization,andotherdesignaspectsaremadeduringdesignplanning.Fig.2Designplanning
Designplanningfunctionsincludepartitioningofthedesign,blockplacementandshaping,hardmacroplacement,pinassignmentandoptimization,toplevelrouteplanning,toplevelrepeaterinsertion,blockbudgetgeneration,andpowerrouting.AllofthesefunctionsarecloselylinkedtotheunderlyingphysicsofDSMtechnology.Forexample,top-levelrepeaterinsertioncannotbedoneproperlywithoutconsideringsignalintegrityandpinscannotbeassignedwithoutconsideringantennarules.
Designplanningcanstartuponavailabilityoftheinitialtop-levelnetlist,evenifthemoduleshavenointernaldefinitionorstructure.Atthisstagemissingmodulesarerepresentedasblackboxes.Theareasofblackboxesareuserdefinedandquicktimingmodelsaregeneratedforsetup/holdarcsandclock-to-outputdelays.Areaestimatesformodulesthathavealreadybeensynthesizedwillbedeterminedbythegatecountanduserdefinedutilization.
Oncethedesignisreadin,andblocksizesaredetermined,aninitialfloorplaniscreatedbyautomaticallyplacingallblocks,shapingthesoftblocks,andpackingtheblockstogetherbasedonglobalroutinginformation.Usingtheblockplacementresults,adjacentblocksmaybeclusteredtogether,orverylargeblocksmaybedividedintosmallerblocks.Modificationsofthephysicalhierarchyatthisstagemaybemadetotakefulladvantageofthephysicalimplementationtools,andtominimizethenumberoftop-levelblocks.
Theblockplacermustalsobeabletoautomaticallyperformsuchoperationsasdeterminethebestaspectratiosforsoftblocksandchoosethebestamongdifferentequivalentimplementationsofhardblocks.AcombinationoftheblockplacerwithamemoryormacrogeneratorleadstooptimizedSoCblocksasthedesignplannerfindsaglobaloptimumbetweenthedifferentpossibleimplementationsandthechipplan.Afterinitialblockplacement,top-downpinassignmentisperformed;top-levelconnectivityandtimingdrivetheplacementofthepinsontheblocks.ForRTLorblackboxmodules,pinassignmentwillhelptocreateblock-levelconstraints.Oncethephysicallocationsofpinsareknown,top-levelnetlengthscanbeestimated.
Foreachblock,aninternaldesignplaniscreated.Macroplacementisdrivenbybothtop-downpinassignmentsthatweredoneinthepreviousstepandinternalmetricssuchasconnectivity,timingandarea.Oncetheinternalplanningforallblockshasbeencompleted,powerrouteplanningisdone.Mostrecenttechnologiesrequireameshstructure.Thepowerroutinggridandblockplacementgridshouldbecarefullysettopreventconnectivityproblemsthatmayariseduetomisalignmentofablockwithrespecttopowergrid.
Afterpowerrouting,pinassignmentsarerefinedusingglobalroutingresults.Theglobalroutercanidentifynarroworwidechannelsandmoveblocksaroundtoopenupcongestedchannelsandconstrictsparseones.Thisenablesoptimumpinplacementforroutabilityduringtheimplementationstage.
AnothercomplexityfacingSoCdesignersduringdesignplanningistop-levelrouteplanning.Netsbetweencriticalblocksmustbeasshortaspossibleandshouldoftenberoutedoverotherblocks.Theseover-the-blocknetsshouldbepusheddownintotheblocksautomatically.Thisrequiresthatanumberofoperationstakeplace.Pinsmustbeassignedtotheblocktoaccommodatethisnewfeedthroughnet.Boththetop-levelandinternalblock-levelnetlistsmustbealteredtoaddconnectivitytothefeedthroughnet.
Top-leveltimingbudgetsmustbeadjustedandinternalblock-levelbudgetsmustbegeneratedtoaccountforglobaltimingclosureandsignalintegrity.Theuseofroutingoverblocksmayevenincludereservingspecialroutingchannelsandemptyplacementareasforrepeaters.Alteringblocksinthiswayconflictswiththegoalofhavingseparated,orevenre-usableSoCblocks,soitdependsontheoverallprojectgoalstowhatextentsuchtechniquesareused.IfTurn-AroundTime(TAT)orre-usearetheprimarygoals,suchtechniquesshouldusedverycarefully.Ifsmallestdiesizeorbestdesignperformanceareprimarygoals,thentheuseoffeedthroughsmaybeessentialtoachievingthegoals.
Duringtimingbudgeting,delayoftop-levelnetsshouldbecalculatedwiththeassumptionthatbufferswillbeaddedtolongorhighfan-outnetsasneeded.Blockbudgetswillbeusedasconstraintstodrivesynthesis,prototyping,andimplementationoftheblocks.
Inpractice,planningmaybeginbeforealloftheblocksarefullyimplemented,soroughestimatesareinitiallyusedinstead.Astheblocksprogressivelygaindefinition,itisnecessarytorelaythenewblockinformationbackuptothechip-level,whereitisincrementallyupdatedandtheappropriateadjustmentsaremade.Thismaytriggerchangesatthechiplevelthatmustbepushedbackdowntotheblocklevel.Thisleadstoatop-downbudgeting,bottom-upprototypingflow,whichismorepredictableandbettersuitedtohandlevariancesbetweenblock-levelconstraintsandactualimplementation.
Althoughitmayappearthatthereisaconflictbetweenearlydesignplanningusingblack-boxmodelsorRTLandnetlist-baseddesignplanningthisisnotthecase;theseactivitiesactuallycomplementeachother(Fig.3).
Earlytop-downdesignplanningisanimportantsteptodriveRTLsynthesisandtogenerateagate-levelnetlistthatisusedtofurtherrefinethedesignplan.Fig.3Designactivitiescomplementeachother
Acharacteristicofthecontinuousplanningandoptimizationprocessistheuseofdifferenttypesofmodelsthatareoptimizedforthedifferentoperationsintheprocess.Thisisillustratedinthefigureabove.
Simpleblockmodelsareusedfordesignplanningandbudgeting.Thephysicalprototypesoftheblocksarebuiltbaseduponthebudgetsfromthedesignplan.Thephysicalprototypesprovidevaluablephysicalinformationaboutthefinalimplementationoftheblocks.Theywillbedescribedinthenextchapter.ThephysicalprototypesarethenusedtoreplacetheblackboxesandRTLmodulesatthetoplevel,sothatwecanrefinethechip-levelconstraints.Whenthefinalbudgetingisresolved,wereturntotheblocksandresumetheirimplementation,andthenwefinishwiththetop-levelchipassembly.
Also,differenttypesofmodelscanbemixedatthetoplevelsinceitislikelythatallprototypeswillnotbecompletedatexactlythesametime.Thisenablesearlyverificationandadjustmentofthechip-levelconstraintsusingacombinationofblackboxesorRTLforsomeblocks,accurateprototypesforothers,andevencompletedphysicallayoutsforsomeoftheblocks.
PhysicalprototypingisanimportantstageofthehierarchicaldesignflowasitprovidesmoredetailsabouttheblockimplementationtotheSoCdesigner.Itbridgesthegapbetweenlogicalandphysicaldesignbyaddingphysicalrealitytotheabstractviewofthedesignplanningprocess.Duringphysicalprototyping,logicoptimizationandglobalplacementareconcurrentlyapplied.Atthisstage,design-planningresultsarevalidatedforeachblockandforthetop-level,andallconflictsareresolved.Theprototypesuncovertheproblems;thecorrectiveactionistakeninthedesignplanningstage.Incompletetimingconstraintscanbediscoveredandaddressedwiththeavailabilityofaccuratephysicalinformation.
PhysicalprototypingisinseparablyconnectedwiththephysicalsynthesisprocessthataddressesmanyDSMissuesbycombiningelementsoflogicsynthesisandphysicalimplementationtogetherintoasinglestage.Physicalsynthesis,asmostpeopleuseittoday,startswithagate-levelnetlistandperformslogicoptimization,placementandglobalrouting,toproduceaplaceddesignthatmeetstimingrequirements.Physicalsynthesismayemploynumeroustechniquestooptimizethelogicalstructureofthechipincluding:gatesizing,buffering,pinswapping,gatecloning,usefulskew,re-synthesisandtechnologyre-mapping,redundancy-basedoptimization,andareaandpowerrecovery.[3]
Thisisasignificantimprovementoverpurelogicsynthesisbecausethelogicoptimizationisperformedandevaluatedbasedoncellplacementthatisindicativeofthefinalplacement.
ItissignificanttonotethatitnolongermakessenseforRTL-to-gatesynthesistoolstoperformsophisticatedgate-leveloptimization.Withoutaccuratephysicalinformation,logicsynthesistoolscannotmakegooddecisionsaboutcellsizingorbuffering.
Physicalsynthesisismuchbettersuitedforthesetasks.Today,theroleofRTL-to-gatelogicsynthesishasbeenreducedtosimplyproducingastructuralgate-levelnetlistasquicklyaspossible,andthenpassitalongtophysicalsynthesiswithoutattemptingtooptimizethesizingorbufferingaspects.ThishasconsequencesforIPcores,whicharedeliveredassoftmacrosfromtheIPvendortotheuserorimplementer.TheIPproviderdeliverseitherthefinalhardmacrooranRTL/netlistandimplementationconstraintstoallowtheoptimizationoftheIPduringtheimplementationoftheSoCchip.
Alltheinformationgeneratedduringthephysicalprototypingofblocksplaysakeyroleinfeedingbackmoreaccurateinformationtothedesignplanningstageforrefinementoftop-leveldesignparameters.
Thephysicalprototypeconsistsofacoarseplacementandoptimizednetlist.Powerrouting,clocktreebuffers,highfan-outnetbufferingmustbeincludedinthephysicalprototype.Withoutanyoftheseitems,physicalprototypewillnotcorrelatetoimplementationandwillnotgiveusefulresults.
Tocreatethephysicalprototype,ahierarchicaltreeofcell-clustersisbuilt
fromtheoriginalnetlistbeforetheplacementstarts.Whilebuildingthetree,functionalhierarchyandconnectivityareconsidered.Then,theblockareaisdividedintoplacementbins,andthecell-clustersareassignedtobinsamonghardmacros.Thecongestionismodeledusingwirescrossingbinboundaries.Duringtheearlystages,thebinsareverycoarseanditisnotusefultomeasuretimingsincemostofthewirecapacitanceisduetointra-binnetsandcanonlybestatisticallyestimated.
Asplacementprogresses,theblockareaisfurtherdividedintosmallerbins,andplacementisrefined,toimprovebothcongestionandwirelength.Thebinscontinuetogetprogressivelysmallerinsizeuntilatsomepoint,theglobalwirescanbeaccuratelyestimated,andintra-binwireuncertaintyisnegligible.Physicalsynthesiscannowstartandthenetlististransformedtomeettimingconstraints.Theplacementisnotyetfinalized,hence,theimpactofnetlistoptimizationoperationssuchaslongnetbuffering,sizing,fan-outoptimization,technologyre-mapping,etc.,canbeeasilyabsorbed.
Similarly,clocktreesynthesiscanbedoneatthephysicalprototypingstageassumingtheleafinstancesareplacedatthecenterofthebins.Congestionandutilizationestimatesaremoreaccuratewiththeinclusionofclocktreebuffers.
Physicalprototypesareusedtovalidatetimingbudgets,areabudgets,IRdrop,congestion,andpinlocations.Thefeedbackfromphysicalprototypingbacktodesignplanningcontainsaccuratetimingabstractions(forrefiningbudgetingattop-level),powermodels(fortop-levelIR-Dropanalysis),andcongestionhotspots,whichneedtobeaddressedbyrelocatingpinsorhardmacroplacement.
Thetop-levelphysicalprototypewillprovidefeedbackontop-leveltimingclosure,routingcongestion,andrequiredchannelareaforbufferingbothclockandsignalnets.
Asthedesignbecomesmoreandmoredefined,theloopsbetweenthedesignplanningstageandprototypingwillconverge.Onceallblocksandthetop-levelaredefined,theSoCdesignerisreadyforimplementation.
Sign-offisthedelineationbetweenthedesignrefinementprocessdescribedaboveandthefinalimplementation.IthaschangedovertimetoaccommodatethenewrequirementsassociatedwithDSMprocesstechnologies.Inthepast,anetlisthand-offwassufficientandprovidedareliableinterfacebetweenlogicalandphysicaldesign.Aswehaveseeninthepreviouschapter,anetlistgeneratedbyRTLsynthesisisnolongerthefinalnetlist.Insteadaprototypecontaininganoptimizednetlistandacoarseorevenfinalplacementareusedtosign-offthedesignpriortofinalimplementation.
Implementationcompletestheprocessbytransformingtheprototypeintoafinalphysicallayout.Implementationoperationsincludedetailedlogicoptimization,placement,androuting.Throughouttheprocess,thedesignisbeingcontinuouslymonitoredfortiming,power,clockskewanddelay,IRdrop,andsignalintegrity.Oncetheblocksarefinished,top-levelassemblyisdone.Sincetheblock-levelimplementationsweredrivenbytop-downconstraints,top-levelsurprisesareeliminated.[4]
Asmentionedabovethestartingpointforfinalimplementationcanbeaprototypewithacourseplacement,inthiscasethefinalimplementationproceedsusingthesametechnologyaswasusedtogeneratethephysicalprototypewithprogressivelysmallerandsmallerbins.Ateachbinlevel,congestion,wirelength,andtimingoptimizationsareincrementallyrun.Ifthestartingpointforimplementationisafinalplacement,thentheimplementationstageproceedswiththeroutingandadjuststheplacementasneeded.
Accurateabstractionsofcompletedblocksareneededtoperformtop-levelassemblyandsign-offthedesignfortapeout.Timingmodelsshouldincludeinterfaceparasitics,accountforsignalintegrity,andshouldbeabletoconsidertimingexceptionsonnetsthatcrossblockboundaries.Physicalmodelsshouldcorrectlyrepresentembeddedwidewires,viacutsneartheboundariesofblocks,antennamodels,andelectromigrationeffects.
Top-levelclocktreesynthesisplaysanimportantroleinreducingholdviolations.Atthetop-level,clocktreesaresynthesizedsuchthatskewtoeachblockinputisadjustedtoaccountfortheinsertiondelayinsidetheblock.Thetop-levelsetupandholdviolationscanbeidentifiedandfixedwithblocktimingabstractsgeneratedusingpropagatedclocks.Theskewtoeachregisterconnectedtoablock-levelclockpinwillbeincludedinthetimingabstractifapropagatedclockisusedduringabstractgeneration.Atthetop-level,setupandholdviolationsbetweenclockscanbeidentifiedandaddressed.3CONCLUSION
IPreuseinSoCsbridgesthedesigngapbyimprovingproductivitybutatthesametime,DSMeffectscomplicateintegration.Theonlywaytorestorepredictabilitytodesigncycleisthroughtop-downdesignplanning,combinedwithfastandaccuratephysicalprototyping.Block-baseddesignplanningaddressesincreasedcomplexity;whilephysicalprototypingrestorespredictabilityandimprovesturnaroundtimebytakingintoaccountuncertaintiesduetowiresandotherDSMeffects.
1.?hierarchicaladj.分層的,分等級的。
2.?prototypen.原型,雛形,藍本。
3.?ECO(EngineeringChangeOrder)后期設(shè)計修正。
4.?upfrontadj.坦率的,誠實的,直爽的;公開的,預(yù)付的,預(yù)交的,先期的adv.在最前面。
5.?parasiticsn.寄生現(xiàn)象,寄生效應(yīng)。
6.?Sign-off簽收。
Vocabulary
[1]Physicalprototypingshouldaccuratelypredictthecharacteristicsofthefinalphysicalimplementation.Thiscanbeaccomplishedbyperformingcellplacementandglobalroutingatanappropriatelevelofgranularityneededtoensurethattheprototypecorrelatestothefinalimplementationwithinaspecifiedtolerance.
物理原型設(shè)計應(yīng)當(dāng)精確地預(yù)計最后的物理實現(xiàn)的特性。這可以通過單元布局和全局布線達到,而這種布局布線要在適當(dāng)?shù)姆旨墝哟紊线M行,以保證相關(guān)的設(shè)計原型和最終實現(xiàn)之間的誤差在規(guī)定的容許范圍之內(nèi)。granularity,顆粒度,在這里是電路分級的粒度。ImportantSentences
[2]Traditional,top-downSoCdesignsrelyontheassumptionthatthebudgetingperformedatthechip-levelneednotberevisedaftertheblocksareimplemented.However,unlessveryconservativebudgetsareused,itisimpossibletopredictupfrontwhetherthefinalblockimplementationswillmeetallconstraints.
傳統(tǒng)的自頂向下SoC設(shè)計假定芯片級的預(yù)算在模塊實現(xiàn)之后不需要修正。但是,除非使用很保守的預(yù)算,否則不可能事先預(yù)計最終模塊的實現(xiàn)是否會滿足所有限制條件。
[3]PhysicalprototypingisinseparablyconnectedwiththephysicalsynthesisprocessthataddressesmanyDSMissuesbycombiningelementsoflogicsynthesisandphysicalimplementationtogetherintoasinglestage.Physicalsynthesis,asmostpeopleuseittoday,startswithagate-levelnetlistandperformslogicoptimization,placementandglobalrouting,toproduceaplaceddesignthatmeetstimingrequirements.Physicalsynthesismayemploynumeroustechniquestooptimizethelogicalstructureofthechipincluding:gatesizing,buffering,pinswapping,gatecloning,usefulskew,re-synthesisandtechnologyre-mapping,redundancy-basedoptimization,andareaandpowerrecovery.把邏輯綜合與物理實現(xiàn)結(jié)合在一個階段,物理原型設(shè)計與處理很多深亞微米問題的物理綜合過程不可分離地聯(lián)系在一起。物理綜合可從門級網(wǎng)表開始,進行邏輯綜合,優(yōu)化、布局和全局布線,產(chǎn)生滿足定時要求的定位設(shè)計。物理綜合可以利用很多技術(shù)來優(yōu)化芯片的邏輯結(jié)構(gòu),包括:門的大小、緩沖、引腳交換、門的復(fù)制、有用的畸變、再綜合和工藝再映射、基于冗余的優(yōu)化,以及面積和電源的恢復(fù)。
[4]Implementationcompletestheprocessbytransformingtheprototypeintoafinalphysicallayout.Implementationoperationsincludedetailedlogicoptimization,placement,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 市場調(diào)研方法的試題及答案
- 新能源車的網(wǎng)聯(lián)互通技術(shù)探討試題及答案
- 應(yīng)聘索道面試題及答案
- 建筑施工安全事故案例溝通的考題解析試題及答案
- 精確鎖定重點知識2025年商務(wù)英語考試試題及答案
- 栽培學(xué)實操試題及答案
- 旅游概論面試題及答案
- 數(shù)學(xué)行動方案幼兒園試題及答案
- 旋律的多樣表達與和聲支持樂理考試試題及答案
- 樓梯平面圖試題及答案
- 2025年新高考語文模擬考試試卷(五)
- 人教版2025九年級道德與法治中考備考復(fù)習(xí)計劃
- 財務(wù)管理實務(wù)(浙江廣廈建設(shè)職業(yè)技術(shù)大學(xué))知到智慧樹章節(jié)答案
- 部編版歷史九年級上冊第1課-古代埃及【課件】d
- 外包加工安全協(xié)議書
- GB/T 28589-2024地理信息定位服務(wù)
- 數(shù)據(jù)庫原理及應(yīng)用教程(第5版) (微課版)課件 第4章 關(guān)系型數(shù)據(jù)庫理論
- 人工智能訓(xùn)練師理論知識考核要素細目表五級
- 2024年貴州省中考理科綜合試卷(含答案)
- 110kV變電站專項電氣試驗及調(diào)試方案
- DL-T901-2017火力發(fā)電廠煙囪(煙道)防腐蝕材料
評論
0/150
提交評論