




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023屆上海市培佳雙語(yǔ)學(xué)校高考數(shù)學(xué)試題原創(chuàng)模擬卷(十)注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知水平放置的△ABC是按“斜二測(cè)畫(huà)法”得到如圖所示的直觀圖,其中B′O′=C′O′=1,A′O′=,那么原△ABC的面積是()A. B.2C. D.2.已知單位向量,的夾角為,若向量,,且,則()A.2 B.2 C.4 D.63.一物體作變速直線(xiàn)運(yùn)動(dòng),其曲線(xiàn)如圖所示,則該物體在間的運(yùn)動(dòng)路程為()m.A.1 B. C. D.24.函數(shù)()的圖像可以是()A. B.C. D.5.關(guān)于函數(shù)在區(qū)間的單調(diào)性,下列敘述正確的是()A.單調(diào)遞增 B.單調(diào)遞減 C.先遞減后遞增 D.先遞增后遞減6.設(shè),是兩條不同的直線(xiàn),,是兩個(gè)不同的平面,給出下列四個(gè)命題:①若,,則;②若,,則;③若,,則;④若,,則;其中真命題的個(gè)數(shù)為()A. B. C. D.7.我國(guó)古代數(shù)學(xué)家秦九韶在《數(shù)書(shū)九章》中記述了“三斜求積術(shù)”,用現(xiàn)代式子表示即為:在中,角所對(duì)的邊分別為,則的面積.根據(jù)此公式,若,且,則的面積為()A. B. C. D.8.在三棱錐中,,,,,點(diǎn)到底面的距離為2,則三棱錐外接球的表面積為()A. B. C. D.9.過(guò)雙曲線(xiàn)左焦點(diǎn)的直線(xiàn)交的左支于兩點(diǎn),直線(xiàn)(是坐標(biāo)原點(diǎn))交的右支于點(diǎn),若,且,則的離心率是()A. B. C. D.10.已知集合,則()A. B. C. D.11.已知向量,,若,則()A. B. C.-8 D.812.《算數(shù)書(shū)》竹簡(jiǎn)于上世紀(jì)八十年代在湖北省江陵縣張家山出土,這是我國(guó)現(xiàn)存最早的有系統(tǒng)的數(shù)學(xué)典籍.其中記載有求“囷蓋”的術(shù):“置如其周,令相承也.又以高乘之,三十六成一”.該術(shù)相當(dāng)于給出了由圓錐的底面周長(zhǎng)與高,計(jì)算其體積的近似公式.它實(shí)際上是將圓錐體積公式中的圓周率近似取為3.那么近似公式相當(dāng)于將圓錐體積公式中的圓周率近似取為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,若,則的最小值為_(kāi)_______.14.已知向量=(-4,3),=(6,m),且,則m=__________.15.隨著國(guó)力的發(fā)展,人們的生活水平越來(lái)越好,我國(guó)的人均身高較新中國(guó)成立初期有大幅提高.為了掌握學(xué)生的體質(zhì)與健康現(xiàn)狀,合理制定學(xué)校體育衛(wèi)生工作發(fā)展規(guī)劃,某市進(jìn)行了一次全市高中男生身高統(tǒng)計(jì)調(diào)查,數(shù)據(jù)顯示全市30000名高中男生的身高(單位:)服從正態(tài)分布,且,那么該市身高高于的高中男生人數(shù)大約為_(kāi)_________.16.已知橢圓:的左,右焦點(diǎn)分別為,,過(guò)的直線(xiàn)交橢圓于,兩點(diǎn),若,且的三邊長(zhǎng),,成等差數(shù)列,則的離心率為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),.(1)若不等式的解集為,求的值.(2)若當(dāng)時(shí),,求的取值范圍.18.(12分)追求人類(lèi)與生存環(huán)境的和諧發(fā)展是中國(guó)特色社會(huì)主義生態(tài)文明的價(jià)值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機(jī)抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)()的檢測(cè)數(shù)據(jù),結(jié)果統(tǒng)計(jì)如下:空氣質(zhì)量?jī)?yōu)良輕度污染中度污染重度污染嚴(yán)重污染天數(shù)61418272510(1)從空氣質(zhì)量指數(shù)屬于,的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;(2)已知某企業(yè)每天的經(jīng)濟(jì)損失(單位:元)與空氣質(zhì)量指數(shù)的關(guān)系式為,試估計(jì)該企業(yè)一個(gè)月(按30天計(jì)算)的經(jīng)濟(jì)損失的數(shù)學(xué)期望.19.(12分)設(shè),,,.(1)若的最小值為4,求的值;(2)若,證明:或.20.(12分)設(shè)函數(shù).(1)時(shí),求的單調(diào)區(qū)間;(2)當(dāng)時(shí),設(shè)的最小值為,若恒成立,求實(shí)數(shù)t的取值范圍.21.(12分)某動(dòng)漫影視制作公司長(zhǎng)期堅(jiān)持文化自信,不斷挖掘中華優(yōu)秀傳統(tǒng)文化中的動(dòng)漫題材,創(chuàng)作出一批又一批的優(yōu)秀動(dòng)漫影視作品,獲得市場(chǎng)和廣大觀眾的一致好評(píng),同時(shí)也為公司贏得豐厚的利潤(rùn).該公司年至年的年利潤(rùn)關(guān)于年份代號(hào)的統(tǒng)計(jì)數(shù)據(jù)如下表(已知該公司的年利潤(rùn)與年份代號(hào)線(xiàn)性相關(guān)).年份年份代號(hào)年利潤(rùn)(單位:億元)(Ⅰ)求關(guān)于的線(xiàn)性回歸方程,并預(yù)測(cè)該公司年(年份代號(hào)記為)的年利潤(rùn);(Ⅱ)當(dāng)統(tǒng)計(jì)表中某年年利潤(rùn)的實(shí)際值大于由(Ⅰ)中線(xiàn)性回歸方程計(jì)算出該年利潤(rùn)的估計(jì)值時(shí),稱(chēng)該年為級(jí)利潤(rùn)年,否則稱(chēng)為級(jí)利潤(rùn)年.將(Ⅰ)中預(yù)測(cè)的該公司年的年利潤(rùn)視作該年利潤(rùn)的實(shí)際值,現(xiàn)從年至年這年中隨機(jī)抽取年,求恰有年為級(jí)利潤(rùn)年的概率.參考公式:,.22.(10分)已知圓,定點(diǎn),為平面內(nèi)一動(dòng)點(diǎn),以線(xiàn)段為直徑的圓內(nèi)切于圓,設(shè)動(dòng)點(diǎn)的軌跡為曲線(xiàn)(1)求曲線(xiàn)的方程(2)過(guò)點(diǎn)的直線(xiàn)與交于兩點(diǎn),已知點(diǎn),直線(xiàn)分別與直線(xiàn)交于兩點(diǎn),線(xiàn)段的中點(diǎn)是否在定直線(xiàn)上,若存在,求出該直線(xiàn)方程;若不是,說(shuō)明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
先根據(jù)已知求出原△ABC的高為AO=,再求原△ABC的面積.【詳解】由題圖可知原△ABC的高為AO=,∴S△ABC=×BC×OA=×2×=,故答案為A【點(diǎn)睛】本題主要考查斜二測(cè)畫(huà)法的定義和三角形面積的計(jì)算,意在考察學(xué)生對(duì)這些知識(shí)的掌握水平和分析推理能力.2.C【解析】
根據(jù)列方程,由此求得的值,進(jìn)而求得.【詳解】由于,所以,即,解得.所以所以.故選:C【點(diǎn)睛】本小題主要考查向量垂直的表示,考查向量數(shù)量積的運(yùn)算,考查向量模的求法,屬于基礎(chǔ)題.3.C【解析】
由圖像用分段函數(shù)表示,該物體在間的運(yùn)動(dòng)路程可用定積分表示,計(jì)算即得解【詳解】由題中圖像可得,由變速直線(xiàn)運(yùn)動(dòng)的路程公式,可得.所以物體在間的運(yùn)動(dòng)路程是.故選:C【點(diǎn)睛】本題考查了定積分的實(shí)際應(yīng)用,考查了學(xué)生轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.4.B【解析】
根據(jù),可排除,然后采用導(dǎo)數(shù),判斷原函數(shù)的單調(diào)性,可得結(jié)果.【詳解】由題可知:,所以當(dāng)時(shí),,又,令,則令,則所以函數(shù)在單調(diào)遞減在單調(diào)遞增,故選:B【點(diǎn)睛】本題考查函數(shù)的圖像,可從以下指標(biāo)進(jìn)行觀察:(1)定義域;(2)奇偶性;(3)特殊值;(4)單調(diào)性;(5)值域,屬基礎(chǔ)題.5.C【解析】
先用誘導(dǎo)公式得,再根據(jù)函數(shù)圖像平移的方法求解即可.【詳解】函數(shù)的圖象可由向左平移個(gè)單位得到,如圖所示,在上先遞減后遞增.故選:C【點(diǎn)睛】本題考查三角函數(shù)的平移與單調(diào)性的求解.屬于基礎(chǔ)題.6.C【解析】
利用線(xiàn)線(xiàn)、線(xiàn)面、面面相應(yīng)的判定與性質(zhì)來(lái)解決.【詳解】如果兩條平行線(xiàn)中一條垂直于這個(gè)平面,那么另一條也垂直于這個(gè)平面知①正確;當(dāng)直線(xiàn)平行于平面與平面的交線(xiàn)時(shí)也有,,故②錯(cuò)誤;若,則垂直平面內(nèi)以及與平面平行的所有直線(xiàn),故③正確;若,則存在直線(xiàn)且,因?yàn)椋?,從而,故④正確.故選:C.【點(diǎn)睛】本題考查空間中線(xiàn)線(xiàn)、線(xiàn)面、面面的位置關(guān)系,里面涉及到了相應(yīng)的判定定理以及性質(zhì)定理,是一道基礎(chǔ)題.7.A【解析】
根據(jù),利用正弦定理邊化為角得,整理為,根據(jù),得,再由余弦定理得,又,代入公式求解.【詳解】由得,即,即,因?yàn)?,所以,由余弦定理,所以,由的面積公式得故選:A【點(diǎn)睛】本題主要考查正弦定理和余弦定理以及類(lèi)比推理,還考查了運(yùn)算求解的能力,屬于中檔題.8.C【解析】
首先根據(jù)垂直關(guān)系可確定,由此可知為三棱錐外接球的球心,在中,可以算出的一個(gè)表達(dá)式,在中,可以計(jì)算出的一個(gè)表達(dá)式,根據(jù)長(zhǎng)度關(guān)系可構(gòu)造等式求得半徑,進(jìn)而求出球的表面積.【詳解】取中點(diǎn),由,可知:,為三棱錐外接球球心,過(guò)作平面,交平面于,連接交于,連接,,,,,,為的中點(diǎn)由球的性質(zhì)可知:平面,,且.設(shè),,,,在中,,即,解得:,三棱錐的外接球的半徑為:,三棱錐外接球的表面積為.故選:.【點(diǎn)睛】本題考查三棱錐外接球的表面積的求解問(wèn)題,求解幾何體外接球相關(guān)問(wèn)題的關(guān)鍵是能夠利用球的性質(zhì)確定外接球球心的位置.9.D【解析】
如圖,設(shè)雙曲線(xiàn)的右焦點(diǎn)為,連接并延長(zhǎng)交右支于,連接,設(shè),利用雙曲線(xiàn)的幾何性質(zhì)可以得到,,結(jié)合、可求離心率.【詳解】如圖,設(shè)雙曲線(xiàn)的右焦點(diǎn)為,連接,連接并延長(zhǎng)交右支于.因?yàn)椋仕倪呅螢槠叫兴倪呅?,?又雙曲線(xiàn)為中心對(duì)稱(chēng)圖形,故.設(shè),則,故,故.因?yàn)闉橹苯侨切?,故,解?在中,有,所以.故選:D.【點(diǎn)睛】本題考查雙曲線(xiàn)離心率,注意利用雙曲線(xiàn)的對(duì)稱(chēng)性(中心對(duì)稱(chēng)、軸對(duì)稱(chēng))以及雙曲線(xiàn)的定義來(lái)構(gòu)造關(guān)于的方程,本題屬于難題.10.A【解析】
考慮既屬于又屬于的集合,即得.【詳解】.故選:【點(diǎn)睛】本題考查集合的交運(yùn)算,屬于基礎(chǔ)題.11.B【解析】
先求出向量,的坐標(biāo),然后由可求出參數(shù)的值.【詳解】由向量,,則,,又,則,解得.故選:B【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算和模長(zhǎng)的運(yùn)算,屬于基礎(chǔ)題.12.C【解析】
將圓錐的體積用兩種方式表達(dá),即,解出即可.【詳解】設(shè)圓錐底面圓的半徑為r,則,又,故,所以,.故選:C.【點(diǎn)睛】本題利用古代數(shù)學(xué)問(wèn)題考查圓錐體積計(jì)算的實(shí)際應(yīng)用,考查學(xué)生的運(yùn)算求解能力、創(chuàng)新能力.二、填空題:本題共4小題,每小題5分,共20分。13.40【解析】
設(shè)等比數(shù)列的公比為,根據(jù),可得,因?yàn)椋鶕?jù)均值不等式,即可求得答案.【詳解】設(shè)等比數(shù)列的公比為,,,等比數(shù)列的各項(xiàng)為正數(shù),,,當(dāng)且僅當(dāng),即時(shí),取得最小值.故答案為:.【點(diǎn)睛】本題主要考查了求數(shù)列值的最值問(wèn)題,解題關(guān)鍵是掌握等比數(shù)列通項(xiàng)公式和靈活使用均值不等式,考查了分析能力和計(jì)算能力,屬于中檔題.14.8.【解析】
利用轉(zhuǎn)化得到加以計(jì)算,得到.【詳解】向量則.【點(diǎn)睛】本題考查平面向量的坐標(biāo)運(yùn)算、平面向量的數(shù)量積、平面向量的垂直以及轉(zhuǎn)化與化歸思想的應(yīng)用.屬于容易題.15.3000【解析】
根據(jù)正態(tài)曲線(xiàn)的對(duì)稱(chēng)性求出,進(jìn)而可求出身高高于的高中男生人數(shù).【詳解】解:全市30000名高中男生的身高(單位:)服從正態(tài)分布,且,則,該市身高高于的高中男生人數(shù)大約為.故答案為:.【點(diǎn)睛】本題考查正態(tài)曲線(xiàn)的對(duì)稱(chēng)性的應(yīng)用,是基礎(chǔ)題.16.【解析】
設(shè),,,根據(jù)勾股定理得出,而由橢圓的定義得出的周長(zhǎng)為,有,便可求出和的關(guān)系,即可求得橢圓的離心率.【詳解】解:由已知,的三邊長(zhǎng),,成等差數(shù)列,設(shè),,,而,根據(jù)勾股定理有:,解得:,由橢圓定義知:的周長(zhǎng)為,有,,在直角中,由勾股定理,,即:,∴離心率.故答案為:.【點(diǎn)睛】本題考查橢圓的離心率以及橢圓的定義的應(yīng)用,考查計(jì)算能力.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1);(2)【解析】試題分析:(1)求得的解集,根據(jù)集合相等,列出方程組,即可求解的值;(2)①當(dāng)時(shí),恒成立,②當(dāng)時(shí),轉(zhuǎn)化為,設(shè),求得函數(shù)的最小值,即可求解的取值范圍.試題解析:(1)由,得,因?yàn)椴坏仁降慕饧癁?,所以,故不等式可化為,解得,所以,解?(2)①當(dāng)時(shí),恒成立,所以.②當(dāng)時(shí),可化為,設(shè),則,所以當(dāng)時(shí),,所以.綜上,的取值范圍是.18.(1)(2)9060元【解析】
(1)根據(jù)古典概型概率公式和組合數(shù)的計(jì)算可得所求概率;(2)任選一天,設(shè)該天的經(jīng)濟(jì)損失為元,分別求出,,,進(jìn)而求得數(shù)學(xué)期望,據(jù)此得出該企業(yè)一個(gè)月經(jīng)濟(jì)損失的數(shù)學(xué)期望.【詳解】解:(1)設(shè)為選取的3天中空氣質(zhì)量為優(yōu)的天數(shù),則.(2)任選一天,設(shè)該天的經(jīng)濟(jì)損失為元,則的可能取值為0,220,1480,,,,所以(元),故該企業(yè)一個(gè)月的經(jīng)濟(jì)損失的數(shù)學(xué)期望為(元).【點(diǎn)睛】本題考查古典概型概率公式和組合數(shù)的計(jì)算及數(shù)學(xué)期望,屬于基礎(chǔ)題.19.(1)2;(2)見(jiàn)解析【解析】
(1)將化簡(jiǎn)為,再利用基本不等式即可求出最小值為4,便可得出的值;(2)根據(jù),即,得出,利用基本不等式求出最值,便可得出的取值范圍.【詳解】解:(1)由題可知,,,,,∴.(2)∵,∴,∴,∴,即:或.【點(diǎn)睛】本題考查基本不等式的應(yīng)用,利用基本不等式和放縮法求最值,考查化簡(jiǎn)計(jì)算能力.20.(1)的增區(qū)間為,減區(qū)間為;(2).【解析】
(1)求出函數(shù)的導(dǎo)數(shù),由于參數(shù)的范圍對(duì)導(dǎo)數(shù)的符號(hào)有影響,對(duì)參數(shù)分類(lèi),再研究函數(shù)的單調(diào)區(qū)間;(2)由(1)的結(jié)論,求出的表達(dá)式,由于恒成立,故求出的最大值,即得實(shí)數(shù)的取值范圍的左端點(diǎn).【詳解】解:(1)解:,當(dāng)時(shí),,解得的增區(qū)間為,解得的減區(qū)間為.(2)解:若,由得,由得,所以函數(shù)的減區(qū)間為,增區(qū)間為;,因?yàn)椋?,,令,則恒成立,由于,當(dāng)時(shí),,故函數(shù)在上是減函數(shù),所以成立;當(dāng)時(shí),若則,故函數(shù)在上是增函數(shù),即對(duì)時(shí),,與題意不符;綜上,為所求.【點(diǎn)睛】本題考查導(dǎo)數(shù)在最大值與最小值問(wèn)題中的應(yīng)用,求解本題關(guān)鍵是根據(jù)導(dǎo)數(shù)研究出函數(shù)的單調(diào)性,由最值的定義得出函數(shù)的最值,本題中第一小題是求出函數(shù)的單調(diào)區(qū)間,第二小題是一個(gè)求函數(shù)的最值的問(wèn)題,此類(lèi)題運(yùn)算量較大,轉(zhuǎn)化靈活,解題時(shí)極易因?yàn)樽冃闻c運(yùn)算出錯(cuò),故做題時(shí)要認(rèn)真仔細(xì).21.(Ⅰ),該公司年年利潤(rùn)的預(yù)測(cè)值為億元;(Ⅱ).【解析】
(Ⅰ)求出和的值,將表格中的數(shù)據(jù)代入最
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 設(shè)備維護(hù)缺陷管理制度
- 設(shè)施設(shè)備校準(zhǔn)管理制度
- 設(shè)計(jì)團(tuán)隊(duì)文件管理制度
- 設(shè)計(jì)院大客戶(hù)管理制度
- 診所人員體診管理制度
- 診所消毒服務(wù)管理制度
- 診療項(xiàng)目審批管理制度
- 財(cái)務(wù)管理授權(quán)管理制度
- 貨品庫(kù)存資金管理制度
- 貨物配送公司管理制度
- 2025年下半年廣州市荔灣區(qū)招考社區(qū)居委會(huì)專(zhuān)職工作人員招考易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 國(guó)家職業(yè)技術(shù)技能標(biāo)準(zhǔn) 6-16-02-08 天然氣開(kāi)采工 人社廳發(fā)202226號(hào)
- 緊缺人才培育與集成電路產(chǎn)業(yè)發(fā)展趨勢(shì)
- 95式自動(dòng)步槍對(duì)不動(dòng)目標(biāo)的射擊動(dòng)作要領(lǐng)上課講義
- 建設(shè)領(lǐng)域信息技術(shù)應(yīng)用基本術(shù)語(yǔ)標(biāo)準(zhǔn)
- 地暖保護(hù)層合同協(xié)議
- 講好法院故事:消息寫(xiě)作與新聞攝影實(shí)戰(zhàn)指南
- 2025-2030中國(guó)納豆激酶行業(yè)現(xiàn)狀調(diào)查與發(fā)展前景趨勢(shì)預(yù)測(cè)研究報(bào)告
- 臨床預(yù)防有法護(hù)理有道“4321”結(jié)構(gòu)化干預(yù)方案在腦卒中患者失禁性皮炎皮膚管理臨床應(yīng)用
- 慢性病管理與公共衛(wèi)生試題及答案
- 2025年04月中國(guó)熱帶農(nóng)業(yè)科學(xué)院橡膠研究所第一批公開(kāi)招聘16人(第1號(hào))筆試歷年典型考題(歷年真題考點(diǎn))解題思路附帶答案詳解
評(píng)論
0/150
提交評(píng)論