江蘇大學(xué)《數(shù)據(jù)分析與可視化》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁(yè)
江蘇大學(xué)《數(shù)據(jù)分析與可視化》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁(yè)
江蘇大學(xué)《數(shù)據(jù)分析與可視化》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁(yè)
江蘇大學(xué)《數(shù)據(jù)分析與可視化》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁(yè)
江蘇大學(xué)《數(shù)據(jù)分析與可視化》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線(xiàn)…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)江蘇大學(xué)

《數(shù)據(jù)分析與可視化》2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題1分,共20分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、某電商平臺(tái)想要了解商品銷(xiāo)量與廣告投入之間的關(guān)系,收集了大量數(shù)據(jù)。以下關(guān)于數(shù)據(jù)預(yù)處理的步驟,不正確的是?()A.檢查數(shù)據(jù)的完整性B.直接刪除所有缺失值C.處理異常值D.對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化2、在數(shù)據(jù)挖掘的關(guān)聯(lián)規(guī)則挖掘中,以下哪個(gè)指標(biāo)用于衡量規(guī)則的有效性和實(shí)用性?()A.支持度B.置信度C.提升度D.以上都是3、假設(shè)要為一家電商企業(yè)進(jìn)行銷(xiāo)售數(shù)據(jù)分析,以預(yù)測(cè)未來(lái)一段時(shí)間內(nèi)的銷(xiāo)售額。數(shù)據(jù)集涵蓋了不同產(chǎn)品類(lèi)別、銷(xiāo)售地區(qū)、銷(xiāo)售時(shí)間等多個(gè)變量。在這種情況下,為了提高預(yù)測(cè)的準(zhǔn)確性,以下哪個(gè)步驟可能是至關(guān)重要的?()A.數(shù)據(jù)清洗和預(yù)處理B.選擇合適的預(yù)測(cè)模型C.對(duì)模型進(jìn)行超參數(shù)調(diào)優(yōu)D.以上都是4、在進(jìn)行數(shù)據(jù)分析時(shí),若要研究?jī)蓚€(gè)變量之間的線(xiàn)性關(guān)系,通常會(huì)使用哪種統(tǒng)計(jì)方法?()A.方差分析B.回歸分析C.因子分析D.聚類(lèi)分析5、假設(shè)我們正在分析一家公司的銷(xiāo)售數(shù)據(jù),發(fā)現(xiàn)某個(gè)月的銷(xiāo)售額異常高。在進(jìn)一步分析時(shí),首先應(yīng)該考慮的因素是?()A.促銷(xiāo)活動(dòng)B.數(shù)據(jù)錄入錯(cuò)誤C.市場(chǎng)需求突然增加D.競(jìng)爭(zhēng)對(duì)手表現(xiàn)不佳6、在數(shù)據(jù)分析中的分類(lèi)算法評(píng)估指標(biāo)中,以下關(guān)于準(zhǔn)確率和召回率的說(shuō)法,不正確的是()A.準(zhǔn)確率是指分類(lèi)正確的樣本數(shù)占總樣本數(shù)的比例B.召回率是指被正確分類(lèi)的正例樣本數(shù)占實(shí)際正例樣本數(shù)的比例C.在某些情況下,準(zhǔn)確率和召回率可能存在矛盾,需要根據(jù)具體問(wèn)題權(quán)衡二者的重要性D.為了綜合評(píng)估分類(lèi)算法的性能,只需要關(guān)注準(zhǔn)確率和召回率其中一個(gè)指標(biāo)即可,另一個(gè)可以忽略7、在進(jìn)行數(shù)據(jù)聚類(lèi)時(shí),需要確定合適的聚類(lèi)數(shù)量。假設(shè)我們使用K-Means算法進(jìn)行聚類(lèi),以下哪種方法可以幫助我們選擇最優(yōu)的K值?()A.肘部法則B.輪廓系數(shù)C.均方誤差D.以上都是8、對(duì)于一個(gè)具有多個(gè)特征的數(shù)據(jù)集,若要進(jìn)行特征縮放,以下哪種方法可以將特征值映射到特定的區(qū)間?()A.最小-最大縮放B.標(biāo)準(zhǔn)化C.正則化D.以上都是9、在數(shù)據(jù)分析中,如果數(shù)據(jù)存在偏差,可能會(huì)導(dǎo)致分析結(jié)果不準(zhǔn)確。以下哪種情況可能導(dǎo)致數(shù)據(jù)偏差?()A.抽樣方法不合理B.數(shù)據(jù)錄入錯(cuò)誤C.樣本量過(guò)小D.以上都是10、數(shù)據(jù)分析中的特征選擇用于篩選出對(duì)目標(biāo)變量最有預(yù)測(cè)能力的特征。假設(shè)要分析一個(gè)包含數(shù)百個(gè)特征的數(shù)據(jù)集,以預(yù)測(cè)某種疾病的發(fā)生概率。以下哪種特征選擇方法在處理這種高維度數(shù)據(jù)時(shí)更能有效地篩選出關(guān)鍵特征?()A.過(guò)濾式特征選擇B.包裹式特征選擇C.嵌入式特征選擇D.以上方法效果相同11、在處理時(shí)間序列數(shù)據(jù)時(shí),例如股票價(jià)格的歷史數(shù)據(jù)。假設(shè)要預(yù)測(cè)未來(lái)一段時(shí)間的股票價(jià)格,以下哪種方法可能會(huì)受到數(shù)據(jù)季節(jié)性波動(dòng)的較大影響?()A.移動(dòng)平均法B.指數(shù)平滑法C.ARIMA模型D.隨機(jī)森林模型12、在數(shù)據(jù)分析中,數(shù)據(jù)預(yù)處理的步驟包括數(shù)據(jù)清洗、轉(zhuǎn)換和歸一化等。假設(shè)我們要對(duì)一組數(shù)值型數(shù)據(jù)進(jìn)行預(yù)處理。以下關(guān)于數(shù)據(jù)預(yù)處理的描述,哪一項(xiàng)是不正確的?()A.數(shù)據(jù)轉(zhuǎn)換可以將數(shù)據(jù)映射到不同的范圍或格式,便于后續(xù)分析B.歸一化可以將數(shù)據(jù)縮放到相同的范圍,避免不同量級(jí)數(shù)據(jù)的影響C.數(shù)據(jù)預(yù)處理對(duì)數(shù)據(jù)分析的結(jié)果影響不大,可以隨意進(jìn)行D.對(duì)于離群點(diǎn),可以采用截?cái)嗷騑insorize等方法進(jìn)行處理13、在處理多變量數(shù)據(jù)時(shí),降維技術(shù)可以幫助我們簡(jiǎn)化分析。假設(shè)我們有一個(gè)包含多個(gè)相關(guān)變量的數(shù)據(jù)集,以下哪種降維技術(shù)可以保留數(shù)據(jù)的局部結(jié)構(gòu)?()A.主成分分析(PCA)B.線(xiàn)性判別分析(LDA)C.t分布隨機(jī)鄰域嵌入(t-SNE)D.局部線(xiàn)性嵌入(LLE)14、在數(shù)據(jù)分析的過(guò)程中,需要對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化或歸一化處理,例如將不同單位和量級(jí)的數(shù)據(jù)轉(zhuǎn)換為統(tǒng)一的尺度。以下哪種情況可能更需要進(jìn)行數(shù)據(jù)標(biāo)準(zhǔn)化?()A.數(shù)據(jù)的分布比較均勻B.數(shù)據(jù)的量級(jí)差異較大C.數(shù)據(jù)的類(lèi)型比較單一D.以上都不是15、數(shù)據(jù)分析中,假設(shè)檢驗(yàn)是常用的方法之一。以下關(guān)于假設(shè)檢驗(yàn)的描述,錯(cuò)誤的是:()A.原假設(shè)和備擇假設(shè)是相互對(duì)立的B.當(dāng)P值小于顯著性水平時(shí),拒絕原假設(shè)C.第一類(lèi)錯(cuò)誤是指錯(cuò)誤地拒絕了原假設(shè)D.樣本量越大,越容易犯第二類(lèi)錯(cuò)誤16、在數(shù)據(jù)可視化中,顏色的選擇和使用對(duì)于傳達(dá)信息有重要影響。假設(shè)要在一個(gè)圖表中突出顯示關(guān)鍵數(shù)據(jù),以下哪種顏色搭配策略可能是最有效的?()A.使用鮮艷的對(duì)比色B.使用相近的柔和色C.隨機(jī)選擇顏色D.只使用一種顏色17、假設(shè)要分析某產(chǎn)品在不同地區(qū)的銷(xiāo)售情況,同時(shí)考慮地區(qū)的經(jīng)濟(jì)發(fā)展水平和人口密度等因素,以下哪種分析方法較為合適?()A.方差分析B.多元回歸分析C.因子分析D.對(duì)應(yīng)分析18、在處理大數(shù)據(jù)時(shí),分布式計(jì)算框架發(fā)揮了重要作用。以下關(guān)于分布式計(jì)算框架的描述,正確的是:()A.Hadoop僅適用于數(shù)據(jù)存儲(chǔ),不支持?jǐn)?shù)據(jù)處理B.Spark相比Hadoop,在迭代計(jì)算方面性能更優(yōu)C.分布式計(jì)算框架可以解決數(shù)據(jù)的一致性問(wèn)題,但無(wú)法提高計(jì)算效率D.分布式計(jì)算框架中的節(jié)點(diǎn)之間不需要進(jìn)行通信和協(xié)調(diào)19、在數(shù)據(jù)分析中的數(shù)據(jù)預(yù)處理階段,以下關(guān)于數(shù)據(jù)標(biāo)準(zhǔn)化和歸一化的敘述,不準(zhǔn)確的是()A.數(shù)據(jù)標(biāo)準(zhǔn)化是將數(shù)據(jù)轉(zhuǎn)換為具有零均值和單位方差的分布,使不同特征在數(shù)值上具有可比性B.數(shù)據(jù)歸一化是將數(shù)據(jù)映射到特定的區(qū)間,如[0,1]或[-1,1],以消除量綱的影響C.標(biāo)準(zhǔn)化和歸一化對(duì)于某些算法(如基于距離的算法)的性能提升有幫助,但不是必需的步驟D.無(wú)論數(shù)據(jù)的分布和特征如何,都應(yīng)該進(jìn)行標(biāo)準(zhǔn)化或歸一化處理,以確保分析結(jié)果的準(zhǔn)確性20、假設(shè)要分析一個(gè)電商平臺(tái)的用戶(hù)評(píng)論數(shù)據(jù),以提取用戶(hù)的意見(jiàn)和情感傾向。以下哪種自然語(yǔ)言處理技術(shù)和方法可能是關(guān)鍵的?()A.詞袋模型B.情感分析C.命名實(shí)體識(shí)別D.以上都是二、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)解釋什么是數(shù)據(jù)可視化,以及它在數(shù)據(jù)分析中的重要性。請(qǐng)列舉至少三種常見(jiàn)的數(shù)據(jù)可視化圖表,并說(shuō)明其適用場(chǎng)景。2、(本題5分)簡(jiǎn)述數(shù)據(jù)庫(kù)查詢(xún)語(yǔ)言(如SQL)在數(shù)據(jù)分析中的作用和基本操作,舉例說(shuō)明如何使用SQL進(jìn)行數(shù)據(jù)篩選、聚合和關(guān)聯(lián)。3、(本題5分)在進(jìn)行數(shù)據(jù)分析時(shí),如何進(jìn)行數(shù)據(jù)的探索性分析(EDA)?解釋EDA的主要步驟和目的,以及常用的工具和技術(shù)。4、(本題5分)數(shù)據(jù)挖掘是從大量數(shù)據(jù)中發(fā)現(xiàn)潛在模式和知識(shí)的過(guò)程,請(qǐng)說(shuō)明數(shù)據(jù)挖掘的主要任務(wù)和常用技術(shù),并舉例其在實(shí)際中的應(yīng)用。5、(本題5分)闡述數(shù)據(jù)倉(cāng)庫(kù)中的緩慢變化維的處理方法,如直接覆蓋、添加新行等,并說(shuō)明如何根據(jù)業(yè)務(wù)需求選擇合適的處理方式。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某在線(xiàn)日語(yǔ)學(xué)習(xí)平臺(tái)積累了學(xué)習(xí)數(shù)據(jù)、用戶(hù)學(xué)習(xí)目標(biāo)、教學(xué)效果反饋等。改進(jìn)教學(xué)方法和課程設(shè)置。2、(本題5分)某服裝品牌收集了不同款式、顏色服裝的銷(xiāo)售數(shù)據(jù)和時(shí)尚潮流信息。分析如何根據(jù)這些數(shù)據(jù)進(jìn)行服裝設(shè)計(jì)和生產(chǎn)決策。3、(本題5分)某母嬰用品電商平臺(tái)掌握了商品銷(xiāo)售數(shù)據(jù)、用戶(hù)年齡分布、消費(fèi)偏好等。分析母嬰市場(chǎng)的需求變化,拓展產(chǎn)品線(xiàn)和服務(wù)。4、(本題5分)一家茶葉專(zhuān)賣(mài)店收集了茶葉銷(xiāo)售數(shù)據(jù)、顧客品鑒反饋、茶葉產(chǎn)地信息等。優(yōu)化茶葉采購(gòu)和銷(xiāo)售策略,滿(mǎn)足顧客口味需求。5、(本題5分)某網(wǎng)約車(chē)平臺(tái)擁有司機(jī)和乘客的數(shù)據(jù),包括接單時(shí)間、行程距離、費(fèi)用、乘客評(píng)價(jià)等。分析司機(jī)的接單時(shí)間分布和行程距離對(duì)費(fèi)用和乘客評(píng)價(jià)的影響。四、論述題(本大題共3個(gè)小題,共30分)1、(本題10分)探討在社交媒體用戶(hù)畫(huà)像構(gòu)建中,如何整合多源數(shù)據(jù),包括用戶(hù)基本信息、社交行為和興趣愛(ài)好等,實(shí)現(xiàn)精準(zhǔn)的用戶(hù)分類(lèi)和營(yíng)銷(xiāo)。2、(本題10分)旅游業(yè)依賴(lài)數(shù)據(jù)分析來(lái)了解游客

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論