




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
陜西省定邊縣2025屆初三下學期期末模擬數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,下列四個圖形是由已知的四個立體圖形展開得到的,則對應的標號是A. B. C. D.2.如圖①是半徑為2的半圓,點C是弧AB的中點,現(xiàn)將半圓如圖②方式翻折,使得點C與圓心O重合,則圖中陰影部分的面積是()A. B.﹣ C.2+ D.2﹣3.下列事件中,屬于必然事件的是()A.三角形的外心到三邊的距離相等B.某射擊運動員射擊一次,命中靶心C.任意畫一個三角形,其內(nèi)角和是180°D.拋一枚硬幣,落地后正面朝上4.如圖,矩形中,,,以為圓心,為半徑畫弧,交于點,以為圓心,為半徑畫弧,交于點,則的長為()A.3 B.4 C. D.55.在0,﹣2,3,四個數(shù)中,最小的數(shù)是()A.0 B.﹣2 C.3 D.6.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,則∠B′等于()A.30° B.50° C.40° D.70°7.如圖,在Rt△ABC中,BC=2,∠BAC=30°,斜邊AB的兩個端點分別在相互垂直的射線OM,ON上滑動,下列結(jié)論:①若C,O兩點關于AB對稱,則OA=;②C,O兩點距離的最大值為4;③若AB平分CO,則AB⊥CO;④斜邊AB的中點D運動路徑的長為π.其中正確的是()A.①② B.①②③ C.①③④ D.①②④8.數(shù)據(jù)”1,2,1,3,1”的眾數(shù)是()A.1B.1.5C.1.6D.39.如圖,邊長為2a的等邊△ABC中,M是高CH所在直線上的一個動點,連接MB,將線段BM繞點B逆時針旋轉(zhuǎn)60°得到BN,連接HN.則在點M運動過程中,線段HN長度的最小值是()A. B.a(chǎn) C. D.10.如圖,AB∥CD,E為CD上一點,射線EF經(jīng)過點A,EC=EA.若∠CAE=30°,則∠BAF=()A.30°B.40°C.50°D.60°11.的倒數(shù)是()A. B.-3 C.3 D.12.若二次函數(shù)的圖像與軸有兩個交點,則實數(shù)的取值范圍是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.隨意的拋一粒豆子,恰好落在圖中的方格中(每個方格除顏色外完全相同),那么這粒豆子落在黑色方格中的可能性是_____.14.解不等式組請結(jié)合題意填空,完成本題的解答.(1)解不等式①,得________;(2)解不等式②,得________;(3)把不等式①和②的解集在數(shù)軸上表示出來;(4)原不等式組的解集為___________.15.如圖①,四邊形ABCD中,AB∥CD,∠ADC=90°,P從A點出發(fā),以每秒1個單位長度的速度,按A→B→C→D的順序在邊上勻速運動,設P點的運動時間為t秒,△PAD的面積為S,S關于t的函數(shù)圖象如圖②所示,當P運動到BC中點時,△PAD的面積為______.16.如圖,AB為⊙O的直徑,C、D為⊙O上的點,.若∠CAB=40°,則∠CAD=_____.17.如圖,直線l1∥l2∥l3,等邊△ABC的頂點B、C分別在直線l2、l3上,若邊BC與直線l3的夾角∠1=25°,則邊AB與直線l1的夾角∠2=________.18.若圓錐的母線長為4cm,其側(cè)面積,則圓錐底面半徑為cm.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知,在菱形ABCD中,∠ADC=60°,點H為CD上任意一點(不與C、D重合),過點H作CD的垂線,交BD于點E,連接AE.(1)如圖1,線段EH、CH、AE之間的數(shù)量關系是;(2)如圖2,將△DHE繞點D順時針旋轉(zhuǎn),當點E、H、C在一條直線上時,求證:AE+EH=CH.20.(6分)如圖,小華和同伴在春游期間,發(fā)現(xiàn)在某地小山坡的點E處有一棵盛開的桃花的小桃樹,他想利用平面鏡測量的方式計算一下小桃樹到山腳下的距離,即DE的長度,小華站在點B的位置,讓同伴移動平面鏡至點C處,此時小華在平面鏡內(nèi)可以看到點E,且BC=2.7米,CD=11.5米,∠CDE=120°,已知小華的身高為1.8米,請你利用以上的數(shù)據(jù)求出DE的長度.(結(jié)果保留根號)21.(6分)如圖,某數(shù)學興趣小組想測量一棵樹CD的高度,他們先在點A處測得樹頂C的仰角為30°,然后沿AD方向前行10m,到達B點,在B處測得樹頂C的仰角高度為60°(A、B、D三點在同一直線上).請你根據(jù)他們測量數(shù)據(jù)計算這棵樹CD的高度(結(jié)果精確到0.1m).(參考數(shù)據(jù):≈1.414,≈1.732)22.(8分)4×100米拉力賽是學校運動會最精彩的項目之一.圖中的實線和虛線分別是初三?一班和初三?二班代表隊在比賽時運動員所跑的路程y(米)與所用時間x(秒)的函數(shù)圖象(假設每名運動員跑步速度不變,交接棒時間忽略不計).問題:(1)初三?二班跑得最快的是第接力棒的運動員;(2)發(fā)令后經(jīng)過多長時間兩班運動員第一次并列?23.(8分)如圖,已知四邊形ABCD是平行四邊形,延長BA至點E,使AE=AB,連接DE,AC(1)求證:四邊形ACDE為平行四邊形;(2)連接CE交AD于點O,若AC=AB=3,cosB=,求線段CE的長.24.(10分)隨著社會經(jīng)濟的發(fā)展,汽車逐漸走入平常百姓家.某數(shù)學興趣小組隨機抽取了我市某單位部分職工進行調(diào)查,對職工購車情況分4類(A:車價40萬元以上;B:車價在20—40萬元;C:車價在20萬元以下;D:暫時未購車)進行了統(tǒng)計,并將統(tǒng)計結(jié)果繪制成以下條形統(tǒng)計圖和扇形統(tǒng)計圖.請結(jié)合圖中信息解答下列問題:(1)調(diào)查樣本人數(shù)為__________,樣本中B類人數(shù)百分比是_______,其所在扇形統(tǒng)計圖中的圓心角度數(shù)是________;(2)把條形統(tǒng)計圖補充完整;(3)該單位甲、乙兩個科室中未購車人數(shù)分別為2人和3人,現(xiàn)從中選2人去參觀車展,用列表或畫樹狀圖的方法,求選出的2人來自不同科室的概率.25.(10分)隨著信息技術的快速發(fā)展,“互聯(lián)網(wǎng)+”滲透到我們?nèi)粘I畹母鱾€領域,網(wǎng)上在線學習交流已不再是夢,現(xiàn)有某教學網(wǎng)站策劃了A,B兩種上網(wǎng)學習的月收費方式:收費方式月使用費/元包時上網(wǎng)時間/h超時費/(元/min)A7250.01Bmn0.01設每月上網(wǎng)學習時間為x小時,方案A,B的收費金額分別為yA,yB.(1)如圖是yB與x之間函數(shù)關系的圖象,請根據(jù)圖象填空:m=;n=;(2)寫出yA與x之間的函數(shù)關系式;(3)選擇哪種方式上網(wǎng)學習合算,為什么.26.(12分)如圖,在平面直角坐標系xOy中,將拋物線y=x2平移,使平移后的拋物線經(jīng)過點A(–3,0)、B(1,0).(1)求平移后的拋物線的表達式.(2)設平移后的拋物線交y軸于點C,在平移后的拋物線的對稱軸上有一動點P,當BP與CP之和最小時,P點坐標是多少?(3)若y=x2與平移后的拋物線對稱軸交于D點,那么,在平移后的拋物線的對稱軸上,是否存在一點M,使得以M、O、D為頂點的三角形△BOD相似?若存在,求點M坐標;若不存在,說明理由.27.(12分)隨著移動計算技術和無線網(wǎng)絡的快速發(fā)展,移動學習方式越來越引起人們的關注,某校計劃將這種學習方式應用到教育學中,從全校1500名學生中隨機抽取了部分學生,對其家庭中擁有的移動設備的情況進行調(diào)查,并繪制出如下的統(tǒng)計圖①和圖②,根據(jù)相關信息,解答下列問題:本次接受隨機抽樣調(diào)查的學生人數(shù)為,圖①中m的值為;求本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);根據(jù)樣本數(shù)據(jù),估計該校1500名學生家庭中擁有3臺移動設備的學生人數(shù).
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
根據(jù)常見幾何體的展開圖即可得.【詳解】由展開圖可知第一個圖形是②正方體的展開圖,第2個圖形是①圓柱體的展開圖,第3個圖形是③三棱柱的展開圖,第4個圖形是④四棱錐的展開圖,故選B本題考查的是幾何體,熟練掌握幾何體的展開面是解題的關鍵.2、D【解析】
連接OC交MN于點P,連接OM、ON,根據(jù)折疊的性質(zhì)得到OP=OM,得到∠POM=60°,根據(jù)勾股定理求出MN,結(jié)合圖形計算即可.【詳解】解:連接OC交MN于點P,連接OM、ON,由題意知,OC⊥MN,且OP=PC=1,在Rt△MOP中,∵OM=2,OP=1,∴cos∠POM==,AC==,∴∠POM=60°,MN=2MP=2,∴∠AOB=2∠AOC=120°,則圖中陰影部分的面積=S半圓-2S弓形MCN=×π×22-2×(-×2×1)=2-π,故選D.本題考查了軸對稱的性質(zhì)的運用、勾股定理的運用、三角函數(shù)值的運用、扇形的面積公式的運用、三角形的面積公式的運用,解答時運用軸對稱的性質(zhì)求解是關鍵.3、C【解析】分析:必然事件就是一定發(fā)生的事件,依據(jù)定義即可作出判斷.詳解:A、三角形的外心到三角形的三個頂點的距離相等,三角形的內(nèi)心到三邊的距離相等,是不可能事件,故本選項不符合題意;B、某射擊運動員射擊一次,命中靶心是隨機事件,故本選項不符合題意;C、三角形的內(nèi)角和是180°,是必然事件,故本選項符合題意;D、拋一枚硬幣,落地后正面朝上,是隨機事件,故本選項不符合題意;故選C.點睛:解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.4、B【解析】
連接DF,在中,利用勾股定理求出CF的長度,則EF的長度可求.【詳解】連接DF,∵四邊形ABCD是矩形∴在中,故選:B.本題主要考查勾股定理,掌握勾股定理的內(nèi)容是解題的關鍵.5、B【解析】
根據(jù)實數(shù)比較大小的法則進行比較即可.【詳解】∵在這四個數(shù)中3>0,>0,-2<0,∴-2最?。蔬xB.本題考查的是實數(shù)的大小比較,即正實數(shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而?。?、A【解析】
利用三角形內(nèi)角和求∠B,然后根據(jù)相似三角形的性質(zhì)求解.【詳解】解:根據(jù)三角形內(nèi)角和定理可得:∠B=30°,根據(jù)相似三角形的性質(zhì)可得:∠B′=∠B=30°.故選:A.本題考查相似三角形的性質(zhì),掌握相似三角形對應角相等是本題的解題關鍵.7、D【解析】分析:①先根據(jù)直角三角形30°的性質(zhì)和勾股定理分別求AC和AB,由對稱的性質(zhì)可知:AB是OC的垂直平分線,所以
②當OC經(jīng)過AB的中點E時,OC最大,則C、O兩點距離的最大值為4;
③如圖2,當∠ABO=30°時,易證四邊形OACB是矩形,此時AB與CO互相平分,但所夾銳角為60°,明顯不垂直,或者根據(jù)四點共圓可知:A、C、B、O四點共圓,則AB為直徑,由垂徑定理相關推論:平分弦(不是直徑)的直徑垂直于這條弦,但當這條弦也是直徑時,即OC是直徑時,AB與OC互相平分,但AB與OC不一定垂直;
④如圖3,半徑為2,圓心角為90°,根據(jù)弧長公式進行計算即可.詳解:在Rt△ABC中,∵∴①若C.O兩點關于AB對稱,如圖1,∴AB是OC的垂直平分線,則所以①正確;②如圖1,取AB的中點為E,連接OE、CE,∵∴當OC經(jīng)過點E時,OC最大,則C.O兩點距離的最大值為4;所以②正確;③如圖2,當時,∴四邊形AOBC是矩形,∴AB與OC互相平分,但AB與OC的夾角為不垂直,所以③不正確;④如圖3,斜邊AB的中點D運動路徑是:以O為圓心,以2為半徑的圓周的則:所以④正確;綜上所述,本題正確的有:①②④;故選D.點睛:屬于三角形的綜合體,考查了直角三角形的性質(zhì),直角三角形斜邊上中線的性質(zhì),軸對稱的性質(zhì),弧長公式等,熟練掌握直角三角形斜邊的中線等于斜邊的一半是解題的關鍵.8、A【解析】
眾數(shù)指一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),根據(jù)眾數(shù)的定義就可以求解.【詳解】在這一組數(shù)據(jù)中1是出現(xiàn)次數(shù)最多的,故眾數(shù)是1.故選:A.本題為統(tǒng)計題,考查眾數(shù)的意義.眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個.9、A【解析】
取CB的中點G,連接MG,根據(jù)等邊三角形的性質(zhì)可得BH=BG,再求出∠HBN=∠MBG,根據(jù)旋轉(zhuǎn)的性質(zhì)可得MB=NB,然后利用“邊角邊”證明∴△MBG≌△NBH,再根據(jù)全等三角形對應邊相等可得HN=MG,然后根據(jù)垂線段最短可得MG⊥CH時最短,再根據(jù)∠BCH=30°求解即可.【詳解】如圖,取BC的中點G,連接MG,∵旋轉(zhuǎn)角為60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等邊△ABC的對稱軸,∴HB=AB,∴HB=BG,又∵MB旋轉(zhuǎn)到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根據(jù)垂線段最短,MG⊥CH時,MG最短,即HN最短,此時∵∠BCH=×60°=30°,CG=AB=×2a=a,∴MG=CG=×a=,∴HN=,故選A.本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),垂線段最短的性質(zhì),作輔助線構(gòu)造出全等三角形是解題的關鍵,也是本題的難點.10、D【解析】解:∵EC=EA.∠CAE=30°,∴∠C=30°,∴∠AED=30°+30°=60°.∵AB∥CD,∴∠BAF=∠AED=60°.故選D.點睛:本題考查的是平行線的性質(zhì),熟知兩直線平行,同位角相等是解答此題的關鍵.11、A【解析】
先求出,再求倒數(shù).【詳解】因為所以的倒數(shù)是故選A考核知識點:絕對值,相反數(shù),倒數(shù).12、D【解析】
由拋物線與x軸有兩個交點可得出△=b2-4ac>0,進而可得出關于m的一元一次不等式,解之即可得出m的取值范圍.【詳解】∵拋物線y=x2-2x+m與x軸有兩個交點,∴△=b2-4ac=(-2)2-4×1×m>0,即4-4m>0,解得:m<1.故選D.本題考查了拋物線與x軸的交點,牢記“當△=b2-4ac>0時,拋物線與x軸有2個交點”是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】
根據(jù)面積法:求出豆子落在黑色方格的面積與總面積的比即可解答.【詳解】∵共有15個方格,其中黑色方格占5個,∴這粒豆子落在黑色方格中的概率是=,故答案為.此題考查了幾何概率的求法,利用概率=相應的面積與總面積之比求出是解題關鍵.14、(1)x<1;(2)x≥﹣2;(1)見解析;(4)﹣2≤x<1;【解析】
(1)先移項,再合并同類項,求出不等式1的解集即可;(2)先去分母、移項,再合并同類項,求出不等式2的解集即可;(1)把兩不等式的解集在數(shù)軸上表示出來即可;(4)根據(jù)數(shù)軸上不等式的解集,求出其公共部分即可.【詳解】(1)解不等式①,得:x<1;(2)解不等式②,得:x≥﹣2;(1)把不等式①和②的解集在數(shù)軸上表示出來如下:(4)原不等式組的解集為:﹣2≤x<1,故答案為:x<1、x≥﹣2、﹣2≤x<1.本題主要考查一元一次不等式組的解法及在數(shù)軸上的表示。15、1【解析】解:由圖象可知,AB+BC=6,AB+BC+CD=10,∴CD=4,根據(jù)題意可知,當P點運動到C點時,△PAD的面積最大,S△PAD=×AD×DC=8,∴AD=4,又∵S△ABD=×AB×AD=2,∴AB=1,∴當P點運動到BC中點時,△PAD的面積=×(AB+CD)×AD=1,故答案為1.16、25°【解析】
連接BC,BD,根據(jù)直徑所對的圓周角是直角,得∠ACB=90°,根據(jù)同弧或等弧所對的圓周角相等,得∠ABD=∠CBD,從而可得到∠BAD的度數(shù).【詳解】如圖,連接BC,BD,∵AB為⊙O的直徑,∴∠ACB=90°,∵∠CAB=40°,∴∠ABC=50°,∵,∴∠ABD=∠CBD=∠ABC=25°,∴∠CAD=∠CBD=25°.故答案為25°.本題考查了圓周角定理及直徑所對的圓周角是直角的知識點,解題的關鍵是正確作出輔助線.17、35【解析】試題分析:如圖:∵△ABC是等邊三角形,∴∠ABC=60°,又∵直線l1∥l2∥l3,∠1=25°,∴∠1=∠3=25°.∴∠4=60°-25°=35°,∴∠2=∠4=35°.考點:1.平行線的性質(zhì);2.等邊三角形的性質(zhì).18、3【解析】∵圓錐的母線長是5cm,側(cè)面積是15πcm2,∴圓錐的側(cè)面展開扇形的弧長為:l==6π,∵錐的側(cè)面展開扇形的弧長等于圓錐的底面周長,∴r==3cm,三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)EH2+CH2=AE2;(2)見解析.【解析】分析:(1)如圖1,過E作EM⊥AD于M,由四邊形ABCD是菱形,得到AD=CD,∠ADE=∠CDE,通過△DME≌△DHE,根據(jù)全等三角形的性質(zhì)得到EM=EH,DM=DH,等量代換得到AM=CH,根據(jù)勾股定理即可得到結(jié)論;
(2)如圖2,根據(jù)菱形的性質(zhì)得到∠BDC=∠BDA=30°,DA=DC,在CH上截取HG,使HG=EH,推出△DEG是等邊三角形,由等邊三角形的性質(zhì)得到∠EDG=60°,推出△DAE≌△DCG,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論.詳解:(1)EH2+CH2=AE2,如圖1,過E作EM⊥AD于M,∵四邊形ABCD是菱形,∴AD=CD,∠ADE=∠CDE,∵EH⊥CD,∴∠DME=∠DHE=90°,在△DME與△DHE中,,∴△DME≌△DHE,∴EM=EH,DM=DH,∴AM=CH,在Rt△AME中,AE2=AM2+EM2,∴AE2=EH2+CH2;故答案為:EH2+CH2=AE2;(2)如圖2,∵菱形ABCD,∠ADC=60°,∴∠BDC=∠BDA=30°,DA=DC,∵EH⊥CD,∴∠DEH=60°,在CH上截取HG,使HG=EH,∵DH⊥EG,∴ED=DG,又∵∠DEG=60°,∴△DEG是等邊三角形,∴∠EDG=60°,∵∠EDG=∠ADC=60°,∴∠EDG﹣∠ADG=∠ADC﹣∠ADG,∴∠ADE=∠CDG,在△DAE與△DCG中,,∴△DAE≌△DCG,∴AE=GC,∵CH=CG+GH,∴CH=AE+EH.點睛:考查了全等三角形的判定和性質(zhì)、菱形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、等邊三角形的判定和性質(zhì),解題的關鍵是正確的作出輔助線.20、DE的長度為6+1.【解析】
根據(jù)相似三角形的判定與性質(zhì)解答即可.【詳解】解:過E作EF⊥BC,∵∠CDE=120°,∴∠EDF=60°,設EF為x,DF=x,∵∠B=∠EFC=90°,∵∠ACB=∠ECD,∴△ABC∽△EFC,∴,即,解得:x=9+2,∴DE==6+1,答:DE的長度為6+1.本題考查相似三角形性質(zhì)的應用,解題時關鍵是找出相似的三角形,然后根據(jù)對應邊成比例列出方程,建立適當?shù)臄?shù)學模型來解決問題.21、這棵樹CD的高度為8.7米【解析】試題分析:首先利用三角形的外角的性質(zhì)求得∠ACB的度數(shù),得到BC的長度,然后在直角△BDC中,利用三角函數(shù)即可求解.試題解析:∵∠CBD=∠A+∠ACB,∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,∴∠A=∠ACB,∴BC=AB=10(米).在直角△BCD中,CD=BCsin∠CBD=10×=5≈5×1.732=8.7(米).答:這棵樹CD的高度為8.7米.考點:解直角三角形的應用22、(1)1;(2)發(fā)令后第37秒兩班運動員在275米處第一次并列.【解析】
(1)直接根據(jù)圖象上點橫坐標可知道最快的是第1接力棒的運動員用了12秒跑完100米;(2)分別利用待定系數(shù)法把圖象相交的部分,一班,二班的直線解析式求出來后,聯(lián)立成方程組求交點坐標即可.【詳解】(1)從函數(shù)圖象上可看出初三?二班跑得最快的是第1接力棒的運動員用了12秒跑完100米;(2)設在圖象相交的部分,設一班的直線為y1=kx+b,把點(28,200),(40,300)代入得:解得:k=,b=﹣,即y1=x﹣,二班的為y2=k′x+b′,把點(25,200),(41,300),代入得:解得:k′=,b′=,即y2=x+聯(lián)立方程組,解得:,所以發(fā)令后第37秒兩班運動員在275米處第一次并列.本題考查了利用一次函數(shù)的模型解決實際問題的能力和讀圖能力.要先根據(jù)題意列出函數(shù)關系式,再代數(shù)求值.解題的關鍵是要分析題意根據(jù)實際意義準確的列出解析式,再把對應值代入求解,并會根據(jù)圖示得出所需要的信息.要掌握利用函數(shù)解析式聯(lián)立成方程組求交點坐標的方法.23、(1)證明見解析;(2)4.【解析】
(1)已知四邊形ABCD是平行四邊形,根據(jù)平行四邊形的性質(zhì)可得AB∥CD,AB=CD,又因AE=AB,可得AE=CD,根據(jù)一組對邊平行且相等的四邊形是平行四邊形即可判定四邊形ACDE是平行四邊形;(2)連接EC,易證△BEC是直角三角形,解直角三角形即可解決問題.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,∵AE=AB,∴AE=CD,∵AE∥CD,∴四邊形ACDE是平行四邊形.(2)如圖,連接EC.∵AC=AB=AE,∴△EBC是直角三角形,∵cosB==,BE=6,∴BC=2,∴EC===4.本題考查平行四邊形的性質(zhì)和判定、直角三角形的判定、勾股定理、銳角三角函數(shù)等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.24、(1)50,20%,72°.(2)圖形見解析;(3)選出的2人來自不同科室的概率=35【解析】試題分析:(1)根據(jù)調(diào)查樣本人數(shù)=A類的人數(shù)除以對應的百分比.樣本中B類人數(shù)百分比=B類人數(shù)除以總?cè)藬?shù),B類人數(shù)所在扇形統(tǒng)計圖中的圓心角度數(shù)=B類人數(shù)的百分比×360°.(2)先求出樣本中B類人數(shù),再畫圖.(3)畫樹狀圖并求出選出的2人來自不同科室的概率.試題解析:(1)調(diào)查樣本人數(shù)為4÷8%=50(人),樣本中B類人數(shù)百分比(50﹣4﹣28﹣8)÷50=20%,B類人數(shù)所在扇形統(tǒng)計圖中的圓心角度數(shù)是20%×360°=72°;(2)如圖,樣本中B類人數(shù)=50﹣4﹣28﹣8=10(人);(3)畫樹狀圖為:共有20種可能的結(jié)果數(shù),其中選出選出的2人來自不同科室占12種,所以選出的2人來自不同科室的概率=1220考點:1.條形統(tǒng)計圖2.扇形統(tǒng)計圖3.列表法與樹狀圖法.25、(1)10,50;(2)見解析;(3)當0<x<30時,選擇A方式上網(wǎng)學習合算,當x=30時,選擇哪種方式上網(wǎng)學習都行,當x>30時,選擇B方式上網(wǎng)學習合算.【解析】
(1)由圖象知:m=10,n=50;(2)根據(jù)已知條件即可求得yA與x之間的函數(shù)關系式為:當x≤25時,yA=7;當x>25時,yA=7+(x﹣25)×0.01;(3)先求出yB與x之間函數(shù)關系為:當x≤50時,yB=10;當x>50時,yB=10+(x﹣50)×60×0.01=0.6x﹣20;然后分段求出哪種方式上網(wǎng)學習合算即可.【詳解】解:(1)由圖象知:m=10,n=50;故答案為:10;50;(2)yA與x之間的函數(shù)關系式為:當x≤25時,yA=7,當x>25時,yA=7+(x﹣25)×60×0.01,∴yA=0.6x﹣8,∴yA=;(3)∵yB與x之間函數(shù)關系為:當x≤50時,yB=10,當x>50時,yB=10+(x﹣50)×60×0.01=0.6x﹣20,當0<x≤25時,yA=7,yB=50,∴yA<yB,∴選擇A方式上網(wǎng)學習合算,當25<x≤50時.yA=yB,即0.6x﹣8=10,解得;x=30,∴當25<x<30時,yA<yB,選擇A方式上網(wǎng)學習合算,當x=30時,yA=yB,選擇哪種方式上網(wǎng)學習都行,當30<x≤50,yA>yB,選擇B方式上網(wǎng)學習合算,當x>50時,∵yA=0.6x﹣8,yB=0.6x﹣20,yA>yB,∴選擇B方式上網(wǎng)學習合算,綜上所述:當0<x<30時,yA<yB,選擇A方式上網(wǎng)學習合算,當x=30時,yA=yB,選擇哪種方式上網(wǎng)學習都行,當x>30時,yA>yB,選擇B方式上網(wǎng)學習合算.本題考查一次函數(shù)的應用.26、(1)y=x2+2x﹣3;(2)點P坐標為(﹣1,﹣2);(3)點M坐標為(﹣1,3)或(﹣1,2).【解析】
(1)設平移后拋物線的表達式為y=a(x+3)(x-1).由題意可知平后拋物線的二次項系數(shù)與原拋物線的二次項系數(shù)相同,從而可求得a的值,于是可求得平移后拋物線的表達式;(2)先根據(jù)平移后拋物線解析式求得其對稱軸,從而得出點C關于對稱軸的對稱點C′坐標,連接BC′,與對稱軸交點即為所求點P,再求得直線BC′解析式,聯(lián)立方程組求解可得;(3)先求得點D的坐標,由點O、B、E、D的坐標可求得OB、OE、DE、BD的長,從而可得到△EDO為等腰三角直角三角形,從而可得到∠MDO=∠BOD=135°,故此當或時,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 訂單備貨協(xié)議書范本
- 設備拆遷勞務合同協(xié)議
- 趕工合同協(xié)議
- 解除綠化合同協(xié)議書范本
- 設備購買協(xié)議書范本
- 證據(jù)承諾協(xié)議書范本
- 賭博婚內(nèi)財產(chǎn)協(xié)議書范本
- 購買地基協(xié)議書模板
- 超市豬肉區(qū)租賃合同協(xié)議
- 解除飯?zhí)贸邪贤瑓f(xié)議
- 人教版小學二年級上冊數(shù)學 期中測試卷
- 2025屆新高考生物熱點沖刺復習:蛋白質(zhì)的分選與囊泡運輸
- 鈑金生產(chǎn)車間安全培訓
- (二模)湛江市2025年普通高考測試(二)政治試卷(含答案)
- 橋梁水下結(jié)構(gòu)內(nèi)部缺陷超聲波檢測基于技術
- 兒童流行性感冒疫苗預防和抗病毒藥物應用的實踐指南(2024版)解讀課件
- 敬老院運營服務務投標方案(技術方案)
- 水資源利用智慧樹知到答案章節(jié)測試2023年西安理工大學
- 水質(zhì)對干豆腐品質(zhì)的影響機制及調(diào)控技術
- 裝配式混凝土結(jié)構(gòu)的構(gòu)件安裝分項工程(驗收批)質(zhì)量驗收記錄表
- 張京16分鐘中英文對照翻譯稿
評論
0/150
提交評論