2025屆吉林省長春市解放大路中學八年級數(shù)學第二學期期末學業(yè)質量監(jiān)測試題含解析_第1頁
2025屆吉林省長春市解放大路中學八年級數(shù)學第二學期期末學業(yè)質量監(jiān)測試題含解析_第2頁
2025屆吉林省長春市解放大路中學八年級數(shù)學第二學期期末學業(yè)質量監(jiān)測試題含解析_第3頁
2025屆吉林省長春市解放大路中學八年級數(shù)學第二學期期末學業(yè)質量監(jiān)測試題含解析_第4頁
2025屆吉林省長春市解放大路中學八年級數(shù)學第二學期期末學業(yè)質量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆吉林省長春市解放大路中學八年級數(shù)學第二學期期末學業(yè)質量監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.甲、乙兩車從A地出發(fā),沿同一路線駛向B地.甲車先出發(fā)勻速駛向B地,40min后,乙車出發(fā),勻速行駛一段時間后,在途中的貨站裝貨耗時半小時.由于滿載貨物,為了行駛安全,速度減少了50km/h,結果與甲車同時到達B地.甲乙兩車距A地的路程y(km)與乙車行駛時間x(h)之間的函數(shù)圖象如圖所示,則下列說法中正確的有()①;②甲的速度是60km/h;③乙出發(fā)80min追上甲;④乙剛到達貨站時,甲距B地180km.A.4個 B.3個 C.2個 D.1個2.下列各式中,正確的是()A. B. C. D.3.矩形的對角線長為10,兩鄰邊之比為3:4,則矩形的面積為()A.12 B.24 C.48 D.504.要使式子3-x有意義,則x的取值范圍是()A.x>0 B.x≥﹣3 C.x≥3 D.x≤35.關于x的正比例函數(shù),y=(m+1)若y隨x的增大而減小,則m的值為()A.2 B.-2 C.±2 D.-6.如圖,將一個含角的直角三角板繞點旋轉,得點,,,在同一條直線上,則旋轉角的度數(shù)是()A. B. C. D.7.若甲、乙兩人同時從某地出發(fā),沿著同一個方向行走到同一個目的地,其中甲一半的路程以a(km/h)的速度行走,另一半的路程以b(km/h)的速度行走;乙一半的時間以a(km/h)的速度行走,另一半的時間以b(km/h)的速度行走(a≠b),則先到達目的地的是()A.甲 B.乙C.同時到達 D.無法確定8.測試5位學生“一分鐘跳繩”成績,得到5個各不相同的數(shù)據(jù).在統(tǒng)計時,出現(xiàn)了一處錯誤:將最高成績120個寫成了180個。以下統(tǒng)計量不受影響的是()A.方差 B.標準差 C.平均數(shù) D.中位數(shù)9.“弘揚柳鄉(xiāng)工匠精神,共筑鄉(xiāng)村振興之夢”第三屆柳編文化節(jié)暨首屆“襄陽人游襄州”啟動儀式在浩然廣場舉行。為了迎接此次盛會,某工藝品廠柳編車間組織名工人趕制一批柳編工藝品,為了解每名工人的日均生產(chǎn)能力,隨機調(diào)查了某天每個工人的生產(chǎn)件數(shù),獲得數(shù)據(jù)如下表:則這一天名工人生產(chǎn)件數(shù)的眾數(shù)和中位數(shù)分別是()A.件、件 B.件、件 C.件、件 D.件、件10.如圖,中,,垂直平分,垂足為,,且,,則的長為()A. B. C. D.11.估計的值應在()A.2和3之間 B.3和4之間 C.4和5之間 D.5和6之間12.如圖,在斜坡的頂部有一鐵塔AB,B是CD的中點,CD是水平的,在陽光的照射下,塔影DE留在坡面上.已知鐵塔底座寬CD=12m,塔影長DE=18m,小明和小華的身高都是1.6m,同一時刻,小明站在點E處,影子在坡面上,小華站在平地上,影子也在平地上,兩人的影長分別為2m和1m,那么塔高AB為()A.24m B.22m C.20m D.18m二、填空題(每題4分,共24分)13.分解因式:=______.14.如圖所示,過y軸正半軸上的任意一點P,作x軸的平行線,分別與反比例函數(shù)的圖象交于點A和點B,若點C是x軸上任意一點,連接AC、BC,則△ABC的面積為_________.15.如圖,菱形中,垂直平分,垂足為,.那么菱形的對角線的長是_____.16.為選派詩詞大會比賽選手,經(jīng)過三輪初賽,甲、乙、丙、丁四位選手的平均成績都是86分,方差分別是s甲2=1.5,s乙2=2.6,s丙2=3.5,s丁2=3.68,若要從中選一位發(fā)揮穩(wěn)定的選手參加決賽你認為派__________________去參賽更合適(填“甲”或“乙”或“丙”或“丁”)17.在一個不透明的盒子中裝有2個白球和3個紅球這些球除了顏色外無其他差別現(xiàn)從這個盒子中任意摸出1個球,那么摸到1個紅球的概率是_________.18.《九章算術》是我國古代重要的數(shù)學著作之一,在“勾股”中記載了一道“折竹抵地”問題:“今有竹高一丈,未折抵地,去本三尺,問折者高幾何?”翻譯成數(shù)學問題是:如圖所示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的長,如果設AC=x,則可列方程求出AC的長為____________.三、解答題(共78分)19.(8分)如圖,在正方形網(wǎng)格中,每個小正方形的邊長都是1,點A、B、C、D都在格點上.(1)線段AB的長是______;(2)在圖中畫出一條線段EF,使EF的長為,并判斷AB、CD、EF三條線段的長能否成為一個直角三角形三邊的長?說明理由.20.(8分)(本小題滿分12分)直線y=34(1)當點A與點F重合時(圖1),求證:四邊形ADBE是平行四邊形,并求直線DE的表達式;(2)當點A不與點F重合時(圖2),四邊形ADBE仍然是平行四邊形?說明理由,此時你還能求出直線DE的表達式嗎?若能,請你出來.21.(8分)解方程(1)+=3(2)22.(10分)先化簡,再求值:+(x﹣2)2﹣6,其中,x=+1.23.(10分)某社區(qū)準備在甲乙兩位射箭愛好者中選出一人參加集訓,兩人各射了5箭,他們的總成績(單位:環(huán))相同,小宇根據(jù)他們的成績繪制了尚不完整的統(tǒng)計圖表,并計算了甲成績的平均數(shù)和方差(見小宇的作業(yè)).小宇的作業(yè):

解:甲=(9+4+7+4+6)=6,

s甲2=[(9-6)2+(4-6)2+(7-6)2+(4-6)2+(6-6)2]

=(9+4+1+4+0)

=3.6

甲、乙兩人射箭成績統(tǒng)計表

第1次

第2次

第3次

第4次

第5次

甲成績

9

4

7

4

6

乙成績

7

5

7

a

7

(1)a=________,乙=________;(2)請完成圖中表示乙成績變化情況的折線;(3)①觀察圖,可看出________的成績比較穩(wěn)定(填“甲”或“乙”).參照小宇的計算方法,計算乙成績的方差,并驗證你的判斷.②請你從平均數(shù)和方差的角度分析,誰將被選中.24.(10分)如圖矩形ABCD中,AB=12,BC=8,E、F分別為AB、CD的中點,點P、Q從A.C同時出發(fā),在邊AD、CB上以每秒1個單位向D、B運動,運動時間為t(0<t<8).(1)如圖1,連接PE、EQ、QF、PF,求證:無論t在0<t<8內(nèi)取任何值,四邊形PEQF總為平行四邊形;(2)如圖2,連接PQ交CE于G,若PG=4QG,求t的值;(3)在運動過程中,是否存在某時刻使得PQ⊥CE于G?若存在,請求出t的值:若不存在,請說明理由25.(12分)(1)計算:(﹣)﹣.(2)如圖所示,四邊形ABCD是平行四邊形,AB=10,AD=8,AC=6,求四邊形ABCD的面積.26.有一次,小明坐著輪船由A點出發(fā)沿正東方向AN航行,在A點望湖中小島M,測得∠MAN=30°,航行100米到達B點時,測得∠MBN=45°,你能算出A點與湖中小島M的距離嗎?

參考答案一、選擇題(每題4分,共48分)1、A【解析】

由線段DE所代表的意思,結合裝貨半小時,可得出a的值,從而判斷出①成立;結合路程=速度×時間,能得出甲車的速度,從而判斷出②成立;設出乙車剛出發(fā)時的速度為x千米/時,則裝滿貨后的速度為(x-50)千米/時,由路程=速度×時間列出關于x的一元一次方程,解出方程即可得知乙車的初始速度,由甲車先跑的路程÷兩車速度差即可得出乙車追上甲車的時間,從而得出③成立;由乙車剛到達貨站的時間,可以得出甲車行駛的總路程,結合A、B兩地的距離即可判斷④也成立.綜上可知①②③④皆成立.【詳解】∵線段DE代表乙車在途中的貨站裝貨耗時半小時,∴a=4+0.5=4.5(小時),即①成立;40分鐘=小時,甲車的速度為460÷(7+)=60(千米/時),即②成立;設乙車剛出發(fā)時的速度為x千米/時,則裝滿貨后的速度為(x?50)千米/時,根據(jù)題意可知:4x+(7?4.5)(x?50)=460,解得:x=90.乙車發(fā)車時,甲車行駛的路程為60×23=40(千米),乙車追上甲車的時間為40÷(90?60)=(小時),小時=80分鐘,即③成立;乙車剛到達貨站時,甲車行駛的時間為(4+)小時,此時甲車離B地的距離為460?60×(4+)=180(千米),即④成立.綜上可知正確的有:①②③④.故選:A.【點睛】本題考查一次函數(shù)的應用——行程問題,解決此類題的關鍵是,要讀懂圖象,看清橫縱坐標所代表的數(shù)學量,及每段圖象所代表的情況.2、D【解析】

先想一下分式的基本性質的內(nèi)容,根據(jù)分式的基本性質逐個判斷即可.【詳解】解:(A)原式=,故A錯誤;(B)原式=,故B錯誤;(C)原式=,故C錯誤;故選:D.【點睛】本題考查了分式的基本性質的應用,主要考查學生對分式的基本性質的理解能力和判斷能力,題目比較典型,比較容易出錯.3、C【解析】

設矩形的兩鄰邊長分別為3x、4x,根據(jù)勾股定理可得(3x)2+(4x)2=102,解方程求得x的值,即可求得矩形兩鄰邊的長,根據(jù)矩形的面積公式即可求得矩形的面積.【詳解】∵矩形的兩鄰邊之比為3:4,∴設矩形的兩鄰邊長分別為:3x,4x,∵對角線長為10,∴(3x)2+(4x)2=102,解得:x=2,∴矩形的兩鄰邊長分別為:6,8;∴矩形的面積為:6×8=1.故選:C.【點睛】本題考查了矩形的性質及勾股定理,利用勾股定理求得矩形兩鄰邊的長是解決問題的關鍵.4、D【解析】

根據(jù)被開方數(shù)是非負數(shù),可得答案.【詳解】解:由題意,得3﹣x≥0,解得x≤3,故選:D.【點睛】本題考查了二次根式有意義的條件,利用被開方數(shù)是非負數(shù)得出不等式是解題關鍵.5、B【解析】

根據(jù)正比例函數(shù)定義可得m2-3=1,再根據(jù)正比例函數(shù)的性質可得m+1<0,再解即可.【詳解】由題意得:m2-3=1,且m+1<0,解得:m=-2,故選:B.【點睛】此題主要考查了正比例函數(shù)的性質和定義,關鍵是掌握正比例函數(shù)y=kx(k≠0)的自變量指數(shù)為1,當k<0時,y隨x的增大而減小.6、D【解析】

根據(jù)題中“直角三角板繞點旋轉”可知,本題考查圖形的旋轉,根據(jù)圖形旋轉的規(guī)律,運用旋轉不改變圖形的大小、旋轉圖形對應角相等,進行求解.【詳解】解:三角形是由三角形ABC旋轉得到.故應選D【點睛】本題解題關鍵:理解旋轉之后的圖形與原圖形對應角相等.7、B【解析】

設從A地到B地的路程為S,甲走完全程所用時間為t甲,乙走完全程所用時間為t乙,根據(jù)題意,分別表示出甲、乙所用時間的代數(shù)式,然后再作比較即可?!驹斀狻拷猓涸O從到達目的地路程為S,甲走完全程所用時間為t甲,乙走完全程所用時間為t乙,由題意得,而對于乙:解得:因為當a≠b時,(a+b)2>4ab,所以<1所以t甲>t乙,即甲先到達,故答案為B.【點睛】本題考查了根據(jù)實際問題列代數(shù)式,列代數(shù)式首先要弄清語句中各種數(shù)量的意義及其相互關系,本題解題的關鍵是表示出甲乙所用時間,并選擇適當?shù)姆椒ū容^出二者的大小.8、D【解析】

根據(jù)方差,平均數(shù),標準差和中位數(shù)的定義和計算方法可得答案.【詳解】解:在方差和標準差的計算過程中都需要用到數(shù)據(jù)的平均數(shù),C選項又是平均數(shù),也就是說四個選項有三個跟平均數(shù)有關,而平均數(shù)的大小和每個數(shù)據(jù)都有關系,一旦某個數(shù)據(jù)改變了,平均數(shù)肯定會隨之改變,而中位數(shù)是整組數(shù)據(jù)從小到大排列后取其中間的數(shù)(偶數(shù)個數(shù)據(jù)時取最中間2數(shù)的平均數(shù))作為中位數(shù),該事件中雖然最大數(shù)120變?yōu)?80.但并不影響中間數(shù)的大小和位置,所以綜上所述,不受影響的應該是中位數(shù).故選:D.【點睛】本題主要考查方差、標準差、中位數(shù)和平均數(shù),解題的關鍵是掌握各統(tǒng)計量的定義和計算方法.9、C【解析】

中位數(shù)是將一組數(shù)據(jù)按照由小到大(或由大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù),如果數(shù)據(jù)的個數(shù)是偶數(shù)就是中間兩個數(shù)的平均數(shù),眾數(shù)是指一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù).【詳解】數(shù)據(jù)3出現(xiàn)的次數(shù)最多,所以眾數(shù)為3件;因為共16人,所以中位數(shù)是第8和第9人的平均數(shù),即中位數(shù)==4件,故選:C.【點睛】本題考查眾數(shù)和中位數(shù),解題關鍵在于熟練掌握計算法則.10、D【解析】

先根據(jù)勾股定理求出AC的長,再根據(jù)DE垂直平分AC得出FA的長,根據(jù)相似三角形的判定定理得出△AFD∽△CBA,由相似三角形的對應邊成比例即可得出結論.【詳解】解:∵Rt△ABC中,∠ABC=90°,AB=3,BC=4,∴AC=,∵DE垂直平分AC,垂足為F,

∴FA=AC=,∠AFD=∠B=90°,

∵AD∥BC,

∴∠A=∠C,

∴△AFD∽△CBA,∴,即,解得AD=,故選D.【點睛】本題考查的是勾股定理及相似三角形的判定與性質,熟知在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解答此題的關鍵.11、B【解析】

找到被開方數(shù)5前后的完全平方數(shù)4和9進行比較,可得答案【詳解】解:∵,且∴∴【點睛】本題考查了估算無理數(shù)的大小,利用被開方數(shù)越大算術平方根越大得出是解題關鍵,又利用了不等式的性質.12、A【解析】

過點D構造矩形,把塔高的影長分解為平地上的BD,斜坡上的DE.然后根據(jù)影長的比分別求得AG,GB長,把它們相加即可.【詳解】解:過D作DF⊥CD,交AE于點F,過F作FG⊥AB,垂足為G.由題意得:.∴DF=DE×1.6÷2=14.4(m).

∴GF=BD=CD=6m.又∵.∴AG=1.6×6=9.6(m).

∴AB=14.4+9.6=24(m).

答:鐵塔的高度為24m.故選A.二、填空題(每題4分,共24分)13、x(x+2)(x﹣2).【解析】試題分析:==x(x+2)(x﹣2).故答案為x(x+2)(x﹣2).考點:提公因式法與公式法的綜合運用;因式分解.14、1.【解析】

設P(0,b),∵直線APB∥x軸,∴A,B兩點的縱坐標都為b,而點A在反比例函數(shù)y=的圖象上,∴當y=b,x=-,即A點坐標為(-,b),又∵點B在反比例函數(shù)y=的圖象上,∴當y=b,x=,即B點坐標為(,b),∴AB=-(-)=,∴S△ABC=?AB?OP=??b=1.15、【解析】

由垂直平分可得,再由菱形的性質得出,根據(jù)勾股定理求出,即可得出.【詳解】解:垂直平分,AB=2cm,∴=2cm,在菱形ABCD中,,,,,,;故答案為:.【點睛】本題考查了垂直平分線的性質、菱形的性質、勾股定理的運用;熟練掌握菱形的性質,運用勾股定理求出是解決問題的關鍵.16、甲【解析】

根據(jù)方差的定義,方差越小數(shù)據(jù)越穩(wěn)定即可求解.【詳解】解:∵s甲2=1.5,s乙2=2.6,s丙2=3.5,s丁2=3.68,而1.5<2.6<3.5<3.68,∴甲的成績最穩(wěn)定,∴派甲去參賽更好,故答案為甲.【點睛】本題考查了方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.17、【解析】

用紅球的個數(shù)除以總球的個數(shù)即可得出答案.【詳解】解:∵不透明的盒子中裝有2個白球和3個紅球,共有5個球,

∴這個盒子中任意模出1個球、那么摸到1個紅球的概率是;

故答案為:.【點睛】本題考查了概率公式:隨機事件A的概率P(A)=事件A可能出現(xiàn)的結果數(shù)除以所有可能出現(xiàn)的結果數(shù).18、.【解析】

設AC=x,可知AB=10﹣x,再根據(jù)勾股定理即可得出結論.【詳解】解:設AC=x.∵AC+AB=10,∴AB=10﹣x.∵在Rt△ABC中,∠ACB=90°,∴AC1+BC1=AB1,即x1+31=(10﹣x)1.解得:x.故答案為:【點睛】本題考查了勾股定理的應用,在應用勾股定理解決實際問題時勾股定理與方程的結合是解決實際問題常用的方法,關鍵是從題中抽象出勾股定理這一數(shù)學模型,畫出準確的示意圖.領會數(shù)形結合的思想的應用.三、解答題(共78分)19、(1);(2)見解析,AB、CD、EF三條線段的長能成為一個直角三角形三邊的長,理由見解析【解析】

(1)直接利用勾股定理得出AB的長;(2)直接利用勾股定理以及勾股定理逆定理分析得出答案.【詳解】(1)線段AB的長是:=;故答案為:;(2)如圖所示:EF即為所求,AB、CD、EF三條線段的長能成為一個直角三角形三邊的長理由:∵AB2=()2=5,DC2=8,EF2=13,∴AB2+DC2=EF2,∴AB、CD、EF三條線段的長能成為一個直角三角形三邊的長.【點睛】此題主要考查了勾股定理以及勾股定理逆定理,正確結合網(wǎng)格分析是解題關鍵.20、(1)y=38x+3;(2)四邊形ADBE【解析】試題分析:對于直線y=34(1)當A與F重合時,根據(jù)F坐標確定出A坐標,進而確定出AB的長,由AB與BC的比值求出BC的長,確定出AD=BE,而AD與BE平行,利用一組對邊平行且相等的四邊形為平行四邊形得到四邊形AEBD為平行四邊形;根據(jù)AB與BC的長確定出D坐標,設直線DE解析式為y=kx+b,將D與E坐標代入求出k與b的值,即可確定出直線DE解析式;(2)當點A不與點F重合時,四邊形ADBE仍然是平行四邊形,理由為:根據(jù)直線y=34x+6解析式設出A坐標,進而表示出AB的長,根據(jù)A與B橫坐標相同確定出B坐標,進而表示出EB的長,發(fā)現(xiàn)EB=AD,而EB與AD平行,利用一組對邊平行且相等的四邊形為平行四邊形得到四邊形AEBD為平行四邊形;根據(jù)BC的長求出OC的長,表示出D坐標,設直線DE解析式為y=k1x+b1,將D與E坐標代入求出k1與b1試題解析:對于直線y=34令x=0,得到y(tǒng)=6;令y=0,得到x=﹣8,即E(﹣8,0),F(xiàn)(0,6),(1)當點A與點F重合時,A(0,6),即AB=6,∵AB:BC=2:1,∴BC=8,∴AD=BE=8,又∵AD∥BE,∴四邊形ADBE是平行四邊形;∴D(8,6),設直線DE解析式為y=kx+b(k、b為常數(shù)且k≠0),將D(8,6),E(﹣8,0)代入得:8k+b=6-8k+b=0解得:b=2,k=38則直線DE解析式為y=38(2)四邊形ADBE仍然是平行四邊形,理由為:設點A(m,34m+6)即AB=3∴BE=m+8,又∵AB:BC=2:1,∴BC=m+8,∴AD=m+8,∴BE=AD,又∵BE∥AD,∴四邊形ADBE仍然是平行四邊形;又∵BC=m+8,∴OC=2m+8,∴D(2m+8,34設直線DE解析式為y=k1x+b1(k1、b1為常數(shù)且k1≠0),將D與E坐標代入得:34解得:k1=38,b1則直線DE解析式為y=38考點:一次函數(shù)綜合題.21、(1)x=;(2)x=1【解析】

(1)按步驟:①去分母;②求出整式方程的解;③檢驗;④得出結論解分式方程;(2)按步驟:①去分母;②求出整式方程的解;③檢驗;④得出結論解分式方程;【詳解】(1)+=33-2=3(2x-2)1=6x-6x=,當x=時,2x-2≠0,所以x=是方程的解;(2)x-3+2(x+3)=6x-3+2x+6=63x=3x=1.當x=1時,x2-9≠0,所以x=1是方程的解.【點睛】考查了解分式方程,解分式方程的基本思想是“轉化思想”,把分式方程轉化為整式方程求解.解分式方程一定注意要驗根.22、(x﹣1)2+3;8.【解析】

原式第一項約分,第二項利用完全平方公式化簡,第三項利用二次根式性質計算得到最簡結果,把x的值代入計算即可求出值.【詳解】解:∵x=+1>0,∴原式=+x2﹣4x+4﹣2x=4x+x2﹣4x+4﹣2x=x2﹣2x+4=(x﹣1)2+3=5+3=8.故答案為(x﹣1)2+3;8.【點睛】本題考查了二次根式的化簡求值.23、(1)46(2)見解析(3)①乙1.6,判斷見解析②乙,理由見解析【解析】

解:(1)由題意得:甲的總成績是:9+4+7+4+6=30,則a=30-7-7-5-7=4,乙=30÷5=6,所以答案為:4,6;(2)如圖所示:(3)①觀察圖,可看出乙的成績比較穩(wěn)定,所以答案為:乙;s乙2=[(7-6)2+(5-6)2+(7-6)2+(4-6)2+(7-6)2]=1.6由于s乙2<s甲2,所以上述判斷正確.②因為兩人成績的平均水平(平均數(shù))相同,根據(jù)方差得出乙的成績比甲穩(wěn)定,所以乙將被選中.24、(1)見解析;(2);(3)不存在,理由見解析.【解析】

(1)由矩形的性質得出CD=AB=12,AD=BC=8,∠A=∠B=∠C=∠D=90°,由SAS證明△APE≌△CQF,得出PE=QF,同理:PF=QE,即可得出結論;(2)根據(jù)題意得:AP=CQ=t,∴PD=QB=8-t,作EF∥BC交CD于E,交PQ于H,證出EH是梯形ABQP的中位線,由梯形中位線定理得出EH=(AP+BQ)=4,證出GH:GQ=3:2,由平行線得出△EGH∽△CGQ,得出對應邊成比例,即可得出t的值;(3)由勾股定理求出CE==10,作EM∥BC交PQ于M,由(2)得:ME=4,證出△GCQ∽△BCE,得出對應邊成比例求出CG=t,得出EG=10-t,由平行線證明△GME∽△GQC,得出對應邊成比例,求出t=0或t=8.5,即可得出結論.【詳解】(1)證明:∵四邊形ABCD是矩形,∴CD=AB=12,AD=BC=8,∠A=∠B=∠C=∠D=90°,∵E、F分別為AB、CD的中點,∴AE=BE=6,DF=CF=6,∴AE=BE=DF=CF,∵點P、Q從A.C同時

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論