南京理工大學(xué)《人工智能原理及應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁
南京理工大學(xué)《人工智能原理及應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁
南京理工大學(xué)《人工智能原理及應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁
南京理工大學(xué)《人工智能原理及應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

站名:站名:年級專業(yè):姓名:學(xué)號:凡年級專業(yè)、姓名、學(xué)號錯(cuò)寫、漏寫或字跡不清者,成績按零分記?!堋狻€…………第1頁,共1頁南京理工大學(xué)《人工智能原理及應(yīng)用》

2023-2024學(xué)年第二學(xué)期期末試卷題號一二三四總分得分一、單選題(本大題共25個(gè)小題,每小題1分,共25分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、生成對抗網(wǎng)絡(luò)(GAN)是一種熱門的人工智能技術(shù)。假設(shè)要使用GAN生成逼真的圖像,以下關(guān)于GAN的描述,正確的是:()A.GAN由一個(gè)生成器和一個(gè)判別器組成,它們相互競爭,共同提高生成效果B.生成器的目標(biāo)是盡量使生成的圖像與真實(shí)圖像差異增大,以迷惑判別器C.判別器的能力越強(qiáng),生成器生成的圖像質(zhì)量就越差D.GAN只能用于圖像生成,不能應(yīng)用于其他領(lǐng)域,如音頻生成2、人工智能在圖像識別領(lǐng)域取得了顯著的成果。假設(shè)要開發(fā)一個(gè)能夠識別水果種類的圖像識別系統(tǒng),需要考慮多種因素。以下關(guān)于圖像數(shù)據(jù)預(yù)處理的步驟,哪一項(xiàng)是最關(guān)鍵的?()A.對圖像進(jìn)行裁剪和旋轉(zhuǎn),以統(tǒng)一圖像的大小和方向B.將圖像轉(zhuǎn)換為灰度圖像,減少數(shù)據(jù)量C.對圖像進(jìn)行增強(qiáng)和去噪處理,提高圖像質(zhì)量D.隨機(jī)打亂圖像的順序,增加數(shù)據(jù)的多樣性3、可解釋性是人工智能模型面臨的一個(gè)重要問題。以下關(guān)于人工智能模型可解釋性的敘述,不正確的是()A.模型的可解釋性有助于用戶理解模型的決策過程和結(jié)果,增強(qiáng)信任B.一些復(fù)雜的深度學(xué)習(xí)模型,如深度神經(jīng)網(wǎng)絡(luò),往往具有較低的可解釋性C.為了提高模型的可解釋性,可以采用特征重要性分析、可視化等方法D.可解釋性對于所有的人工智能應(yīng)用都是同等重要的,不存在優(yōu)先級的差異4、在人工智能的算法選擇中,需要根據(jù)具體問題和數(shù)據(jù)特點(diǎn)進(jìn)行決策。假設(shè)要解決一個(gè)分類問題,數(shù)據(jù)具有高維度和復(fù)雜的非線性關(guān)系,以下關(guān)于算法選擇的描述,正確的是:()A.線性分類算法如邏輯回歸一定能夠處理這種復(fù)雜的數(shù)據(jù),無需考慮其他算法B.決策樹算法在處理高維度和非線性數(shù)據(jù)時(shí)總是表現(xiàn)最佳C.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)(CNN)對于處理圖像等具有空間結(jié)構(gòu)的數(shù)據(jù)效果顯著,但對于一般的高維數(shù)據(jù)可能不太適用D.支持向量機(jī)(SVM)結(jié)合核函數(shù)能夠有效地處理非線性分類問題,是一個(gè)合適的選擇5、人工智能中的語音識別技術(shù)在智能語音交互中起著重要作用。假設(shè)我們要提高語音識別系統(tǒng)在嘈雜環(huán)境下的性能,以下關(guān)于解決方法的說法,哪一項(xiàng)是不正確的?()A.使用更先進(jìn)的聲學(xué)模型B.增加訓(xùn)練數(shù)據(jù)的多樣性C.降低語音信號的采樣率D.采用噪聲抑制技術(shù)6、人工智能中的預(yù)訓(xùn)練語言模型,如GPT-3,具有很強(qiáng)的語言理解和生成能力。假設(shè)要將這樣的預(yù)訓(xùn)練模型應(yīng)用于特定的任務(wù),以下關(guān)于模型應(yīng)用的描述,正確的是:()A.可以直接在預(yù)訓(xùn)練模型上進(jìn)行微調(diào),就能適應(yīng)新的任務(wù),無需額外的訓(xùn)練數(shù)據(jù)B.預(yù)訓(xùn)練模型的參數(shù)固定,不能根據(jù)任務(wù)需求進(jìn)行調(diào)整和優(yōu)化C.預(yù)訓(xùn)練模型的語言生成能力很強(qiáng),但在特定領(lǐng)域的專業(yè)知識上可能存在不足D.預(yù)訓(xùn)練模型在所有自然語言處理任務(wù)中都能取得最優(yōu)的效果7、人工智能在智能客服領(lǐng)域的應(yīng)用越來越廣泛。假設(shè)一個(gè)企業(yè)要部署智能客服系統(tǒng)。以下關(guān)于智能客服的描述,哪一項(xiàng)是不正確的?()A.能夠快速回答常見問題,提高客戶服務(wù)的響應(yīng)速度B.可以通過不斷學(xué)習(xí)和優(yōu)化,提高回答的準(zhǔn)確性和滿意度C.智能客服能夠完全理解客戶的復(fù)雜情感和意圖,提供個(gè)性化的服務(wù)D.與人工客服相結(jié)合,可以提供更優(yōu)質(zhì)的客戶服務(wù)體驗(yàn)8、在人工智能的知識圖譜構(gòu)建中,需要整合大量的結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù),以建立實(shí)體之間的關(guān)系。假設(shè)要構(gòu)建一個(gè)關(guān)于歷史人物和事件的知識圖譜,以下哪種數(shù)據(jù)源對于豐富和準(zhǔn)確的圖譜構(gòu)建是最有價(jià)值的?()A.百科全書和歷史書籍B.社交媒體上的相關(guān)討論C.個(gè)人博客和論壇帖子D.未經(jīng)證實(shí)的網(wǎng)絡(luò)傳聞9、人工智能中的情感識別不僅可以應(yīng)用于人類的情感分析,還可以用于動物的行為研究。假設(shè)我們要通過動物的行為來判斷其情感狀態(tài),以下關(guān)于動物情感識別的說法,哪一項(xiàng)是正確的?()A.動物的情感表達(dá)和人類完全相同B.可以直接使用人類情感識別的模型和方法C.需要結(jié)合動物的生理特征和行為模式進(jìn)行分析D.動物的情感識別沒有實(shí)際應(yīng)用價(jià)值10、在人工智能的應(yīng)用場景中,比如醫(yī)療診斷領(lǐng)域,要開發(fā)一個(gè)能夠根據(jù)患者的癥狀、檢查結(jié)果和病史準(zhǔn)確預(yù)測疾病的系統(tǒng)。為了實(shí)現(xiàn)高精度的預(yù)測,以下哪種因素可能起到?jīng)Q定性作用?()A.數(shù)據(jù)的質(zhì)量和數(shù)量B.算法的復(fù)雜度C.計(jì)算資源的多少D.模型的訓(xùn)練時(shí)間11、在人工智能的強(qiáng)化學(xué)習(xí)中,假設(shè)智能體在探索環(huán)境時(shí)面臨高風(fēng)險(xiǎn)的動作選擇,以下哪種策略能夠平衡探索和利用,以實(shí)現(xiàn)更好的學(xué)習(xí)效果?()A.ε-貪心策略,以一定概率隨機(jī)選擇動作B.始終選擇最優(yōu)動作,不進(jìn)行探索C.隨機(jī)選擇動作,不考慮之前的經(jīng)驗(yàn)D.只在初始階段進(jìn)行探索,之后完全利用12、在一個(gè)利用人工智能進(jìn)行供應(yīng)鏈優(yōu)化的項(xiàng)目中,例如預(yù)測需求、優(yōu)化庫存管理和物流路徑規(guī)劃,以下哪種能力是人工智能系統(tǒng)需要具備的關(guān)鍵特性?()A.大規(guī)模數(shù)據(jù)處理能力B.動態(tài)適應(yīng)能力C.全局優(yōu)化能力D.以上都是13、當(dāng)利用人工智能進(jìn)行文本摘要生成,從長篇文章中提取關(guān)鍵信息并形成簡潔的摘要,以下哪種策略和算法可能是有效的?()A.基于抽取的方法B.基于生成的方法C.融合抽取和生成的方法D.以上都是14、在計(jì)算機(jī)視覺中,以下哪種任務(wù)需要對圖像中的目標(biāo)進(jìn)行定位和分類?()A.圖像分類B.目標(biāo)檢測C.圖像分割D.圖像生成15、強(qiáng)化學(xué)習(xí)是人工智能的一個(gè)重要分支,常用于訓(xùn)練智能體在環(huán)境中做出最優(yōu)決策。假設(shè)一個(gè)智能機(jī)器人需要在迷宮中找到出口,通過與環(huán)境的交互獲得獎勵。在這種情況下,以下關(guān)于強(qiáng)化學(xué)習(xí)算法的選擇,哪一項(xiàng)是最合適的?()A.Q-learning算法,通過估計(jì)狀態(tài)-動作值函數(shù)來選擇最優(yōu)動作B.策略梯度算法,直接優(yōu)化策略以最大化期望回報(bào)C.蒙特卡羅方法,通過隨機(jī)采樣來估計(jì)價(jià)值函數(shù)D.以上算法都不合適,應(yīng)該選擇其他方法16、深度學(xué)習(xí)作為一種強(qiáng)大的人工智能技術(shù),在圖像識別領(lǐng)域取得了顯著成果。假設(shè)要開發(fā)一個(gè)能夠識別各種動物的圖像識別系統(tǒng),以下關(guān)于深度學(xué)習(xí)在該任務(wù)中的描述,哪一項(xiàng)是不正確的?()A.卷積神經(jīng)網(wǎng)絡(luò)(CNN)常用于圖像特征提取和分類,能有效識別動物圖像B.深度神經(jīng)網(wǎng)絡(luò)需要大量的標(biāo)注圖像數(shù)據(jù)進(jìn)行訓(xùn)練,以提高識別準(zhǔn)確率C.通過調(diào)整網(wǎng)絡(luò)結(jié)構(gòu)和參數(shù),可以優(yōu)化圖像識別模型的性能D.深度學(xué)習(xí)模型一旦訓(xùn)練完成,就無需再進(jìn)行優(yōu)化和改進(jìn),能夠始終保持高精度17、在人工智能的研究中,算法的選擇和優(yōu)化至關(guān)重要。假設(shè)要解決一個(gè)復(fù)雜的優(yōu)化問題。以下關(guān)于人工智能算法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.遺傳算法通過模擬生物進(jìn)化過程來尋找最優(yōu)解B.蟻群算法受螞蟻覓食行為啟發(fā),適用于求解組合優(yōu)化問題C.不同的算法適用于不同類型的問題,沒有一種算法能夠通用于所有情況D.算法的性能只取決于其理論復(fù)雜度,與實(shí)際應(yīng)用中的數(shù)據(jù)特點(diǎn)和計(jì)算環(huán)境無關(guān)18、在人工智能的研究中,模型的評估指標(biāo)對于衡量模型性能非常重要。假設(shè)要評估一個(gè)圖像分類模型的性能。以下關(guān)于評估指標(biāo)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.準(zhǔn)確率是常用的評估指標(biāo)之一,表示正確分類的樣本比例B.召回率衡量了模型能夠正確識別正例的能力C.F1分?jǐn)?shù)綜合考慮了準(zhǔn)確率和召回率,是一個(gè)更全面的評估指標(biāo)D.只要模型的準(zhǔn)確率高,就說明模型在實(shí)際應(yīng)用中一定表現(xiàn)良好19、人工智能中的自動推理技術(shù)旨在讓計(jì)算機(jī)自動進(jìn)行邏輯推理。假設(shè)要開發(fā)一個(gè)能夠自動證明數(shù)學(xué)定理的系統(tǒng),以下哪個(gè)挑戰(zhàn)是最難以克服的?()A.定理的復(fù)雜性B.推理規(guī)則的選擇C.知識的表示和編碼D.計(jì)算資源的需求20、在人工智能的醫(yī)療影像診斷中,深度學(xué)習(xí)模型可以輔助醫(yī)生發(fā)現(xiàn)病變。假設(shè)我們要利用深度學(xué)習(xí)模型診斷肺部CT影像中的結(jié)節(jié),以下關(guān)于模型訓(xùn)練的說法,哪一項(xiàng)是正確的?()A.可以使用少量標(biāo)注數(shù)據(jù)獲得準(zhǔn)確的診斷結(jié)果B.模型的泛化能力對于不同醫(yī)院的數(shù)據(jù)不重要C.數(shù)據(jù)增強(qiáng)技術(shù)可以提高模型的魯棒性D.不需要對模型進(jìn)行驗(yàn)證和評估21、當(dāng)使用人工智能進(jìn)行疾病診斷時(shí),需要綜合分析患者的各種臨床數(shù)據(jù),如癥狀、檢查結(jié)果、病史等。假設(shè)這些數(shù)據(jù)來源多樣、格式不統(tǒng)一,且存在一定的噪聲和缺失值。在這種情況下,以下哪種方法能夠更有效地處理和利用這些數(shù)據(jù)進(jìn)行準(zhǔn)確的診斷?()A.數(shù)據(jù)清洗和預(yù)處理,去除噪聲和填充缺失值B.直接使用原始數(shù)據(jù)進(jìn)行診斷,不做任何處理C.只選擇部分關(guān)鍵數(shù)據(jù),忽略其他數(shù)據(jù)D.對數(shù)據(jù)進(jìn)行簡單的統(tǒng)計(jì)分析,不使用機(jī)器學(xué)習(xí)算法22、在人工智能的語音識別任務(wù)中,環(huán)境噪聲和口音的多樣性會影響識別效果。假設(shè)要開發(fā)一個(gè)能夠在嘈雜環(huán)境和多種口音下準(zhǔn)確識別語音的系統(tǒng),以下哪種技術(shù)或方法在提高系統(tǒng)的適應(yīng)性方面最為關(guān)鍵?()A.聲學(xué)模型的優(yōu)化B.語言模型的融合C.多模態(tài)信息的利用D.以上方法結(jié)合使用23、在人工智能的應(yīng)用中,語音合成技術(shù)可以將文本轉(zhuǎn)換為自然流暢的語音。假設(shè)要為一款智能導(dǎo)航應(yīng)用開發(fā)語音合成功能,以下哪個(gè)因素對于合成語音的質(zhì)量影響最大?()A.語音的音色選擇B.文本的語法結(jié)構(gòu)C.語音的韻律和語調(diào)D.文本的詞匯量24、在人工智能的語音合成領(lǐng)域,假設(shè)要生成自然流暢、富有情感的語音,以下關(guān)于語音合成技術(shù)的描述,正確的是:()A.參數(shù)合成方法能夠靈活控制語音的特征,但音質(zhì)相對較差B.拼接合成方法生成的語音自然度高,但需要大量的語音庫支持C.深度學(xué)習(xí)的語音合成模型可以同時(shí)實(shí)現(xiàn)高質(zhì)量和高自然度的語音生成D.語音合成的情感表達(dá)只能通過調(diào)整語音的音調(diào)來實(shí)現(xiàn)25、人工智能中的無監(jiān)督學(xué)習(xí)可以發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式和結(jié)構(gòu)。以下關(guān)于無監(jiān)督學(xué)習(xí)的描述,不正確的是()A.聚類分析和主成分分析是常見的無監(jiān)督學(xué)習(xí)方法B.無監(jiān)督學(xué)習(xí)不需要事先標(biāo)注數(shù)據(jù),能夠自動從數(shù)據(jù)中學(xué)習(xí)特征C.無監(jiān)督學(xué)習(xí)的結(jié)果通常難以解釋和評估,應(yīng)用范圍相對較窄D.可以用于數(shù)據(jù)預(yù)處理、特征提取和異常檢測等任務(wù)二、簡答題(本大題共4個(gè)小題,共20分)1、(本題5分)簡述決策樹算法的原理和應(yīng)用。2、(本題5分)簡述智能家居中的人工智能應(yīng)用。3、(本題5分)解釋人工智能中的數(shù)據(jù)偏見問題。4、(本題5分)解釋人工智能在城市規(guī)劃和交通管理中的創(chuàng)新。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)剖析某智能民間音樂創(chuàng)作風(fēng)格演變分析系統(tǒng)中人工智能的分析能力和歷史脈絡(luò)呈現(xiàn)。2、(本題5分)研究一個(gè)使用人工智能的智能繪畫風(fēng)格模仿系統(tǒng),分析其如何學(xué)習(xí)和模仿特定的繪畫風(fēng)格。3、(本題5分)分析一個(gè)利用人工智能進(jìn)行智能書法作品消費(fèi)者評價(jià)分析系統(tǒng),探討其如何分析消費(fèi)者對書法作品的評價(jià)。4、(本題5分)分析一個(gè)利用人工智能進(jìn)行智能建筑能源管理的系統(tǒng),探討其如何根據(jù)人員活動和環(huán)境條件控制能源消耗。5、(本題5分)分析一個(gè)利用人工智能進(jìn)行智能書法展覽組織

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論