




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
PerformancecharacteristicsoftheAgilent1200InfinitySeriesVariableWavelengthDetectors
Fasterresults,improvedsensitivityandabsolutedatasecurity
TechnicalOverview
Introduction
TheAgilent1200InfinitySeriesVariableWavelengthDetectors(VWD)aredesignedforhighestopticalperformance,compliancewithGLPregulationsandeasymainte-nance.Twoversionsareavailable:theAgilent1260InfinityVWD(G1314F),andtheAgilent1290InfinityVWD(G1314E)withhighsamplingratesforultra-fastHPLCandUHPLC.Thesedetectorsofferthefollowingfeaturesandbenefits:
Highersamplingratesupto160Hzforultra-fastHPLC
(Agilent1290InfinityVWD)orupto80Hz(Agilent1260InfinityVWD)
Datarecoverycard(DRC)providesforunique"data-never-lostinsurance"(Agilent1290InfinityVWD)
Deuteriumlampforhighestintensityandlowestdetectionlimitoverawavelengthrangeof190to600nm
Optionalflow-cellcartridgessuchasstandard(10mmpathlength/14μLvolume),highpressure(10mm/14μL),micro(3mm/2μL)andsemi-micro
(6mm/5μL)areavailableandcanbedeployedaccordingtoapplicationneeds
Easyfrontaccesstoflowcellandlampforfastreplacement
FlowcellandlampwithRFIDtagforsafeidentification
Lampinformation,includingpartnumber,serialnumber,productiondate,numberofignitions,totalburntime
Cellinformation,includingpartnumber,serialnumber,productiondate,nominalpathlength,volume,maximumpressure
Built-inelectronictemperaturecontrol(ETC)forimprovedbaselinestability
Built-inholmiumoxidefilterforfastverificationofwavelengthaccuracy
PAGE
5
Opticaldesign
Figure1showstheopticalsystemoftheAgilent1260and1290InfinityVWD.Itsradiationsourceisadeuteri-um-arcdischargelampfortheultravio-let(UV)wavelengthrangefrom190to600nm.Thelightbeamfromthedeu-teriumlamppassesthroughalens,filterassembly(inopen,cut-offorholmiumoxideposition),entranceslit(1mmstan-dard),sphericalmirror(M1),grating,asecondsphericalmirror(M2),abeamsplitter,andfinallythroughtheflowcelltothesamplediode.Thebeamthroughtheflowcellisabsorbeddependingonthesolutionsinthecell,inwhichUVabsorptiontakesplace,andthesamplephotodiodeconvertstheintensitytoanelectricalsignal.Partofthelightisdirectedtothereferencephotodiodebythebeamsplittertoobtainareferencesignalforcompensationofintensityfluctuationofthelightsource.Aslitinfrontofthereferencephotodiodecutsoutlightofthesamplebandwidth.
Bandwidthistypically6.5nm.Wavelengthselectionismadebyrotat-ingthegrating,whichisdrivendirectlybyasteppermotor.Thisconfigurationallowsfastchangeofthewavelength.Thecut-offfilterismovedintothelightpathabove370nmtoreducehigherorderlight.
Datasamplingrates
Thereisamajortrendtoreduceanaly-sistimesinordertoincreasesamplethroughput.Analysistimesaslowas
0.6minandpeakwidthsof0.4sarenowachievablewithmodernLCequip-mentsuchastheAgilent1290InfinityLCsystem.Thishasplacedhighdemandsonthedatasamplingrate.Detectorsmustbefastenoughtopro-videsufficientdatapointsforthesesmallpeaks.Table1showsthedatasamplingratesettingsoftheAgilent1260and1290InfinityVWD.
Forultra-fastLCapplication,usetheAgilent1290InfinityVWD.Formoreconventionalapplications,theAgilent1260InfinityVWDoffersasufficientlyhighdatasamplingrate.
Thispublicationevaluatesandcom-parestheperformanceoftheAgilent1260InfinityVWDandtheAgilent1290InfinityVWDtotheperformanceofanearlierAgilent1200SeriesVWDmodel.Performancecharacteristicsevaluatedinclude:
Driftandnoise
Limitofdetection(LOD)foranthracene
Detectionofimpuritiesatlevelsbelow0.03%ofthemaincompound
Sensitivityimprovementsbetweenultra-fastLCandconventionalLC
Deuteriumlamp
Cut-offfilterHolmiumoxidefilter
Slit
Samplediode
Mirror1
Flowcell
Beamsplitter
Mirror2
Referencediode
Linearityofcaffeine
Figure1
Opticalsystemof1200SeriesVWDandVWDSLPlus.
Influenceofdatarateonresolution,peakwidthandpeakcapacity
Influenceofdifferentcellsonresolu-tion,noiseandsignal-to-noiseratio
Equipment
AnAgilent1260InfinityBinaryLCsystemwasusedfortheevaluation,comprisingthefollowingmoduleswithfirmwarerevisionsA.06.01orhigher:
Agilent1260InfinityBinaryPumpwithAgilent1260InfinityMicroDegasser
Agilent1260InfinitySeriesHighPerformanceAutosampler
Agilent1260InfinityThermostattedColumnCompartment
Agilent1260InfinityVWDandAgilent1290InfinityVWD
Agilent1200SeriesVWD(earliermodel)
AgilentZORBAXRRHT1.8μmcolumns
1260InfinityVWDPeak
width(min)
Responsetime(s)
Samplingrate(Hz)
1290InfinityVWDPeak
width(min)
Responsetime(s)
Samplingrate
<0.003125
<0.0625
80
<0.0012
<0.03
160
>0.003125
0.0625
80
>0.0012
0.03
160
>0.00625
0.125
80
>0.0025
0.06
160
>0.0125
0.25
40
>0.005
0.12
80
>0.025
0.5
20
>0.01
0.25
40
>0.05
1
10
>0.025
0.5
20
>0.1
2
5
>0.05
1
10
>0.2
4
2.5
>0.1
2
5
>0.4
8
1.25
>0.2
4
2.5
>0.4
8
1.25
Table1
Peakwidths,responsetimesandsamplingratesoftheAgilent1260and1290InfinityVWD.
Noiseanddrift
Absorbance[mAU]
Noiseanddriftarekeyparameterswhenevaluatingtheperformanceofdetectors.Figure2showsthenoiseanddriftbehavioroftheAgilent1260and1290InfinityVWDcomparedtothatoftheearlierAgilent1200SeriesVWDmodel.ThebaselinenoiseoftheAgilent1260and1290InfinityVWDistypicallyafactorofthreetofivetimesbetterthantheearliermodel.Theexperimentaldatapresentedhereshowsanimprovementinbaselinenoisebyafactorof3.4.
Thedriftbehavioralsodependsstronglyonhowsensitivethedetectorreactstochangesinambienttempera-ture.Thedatapresentedhereshowsa2.4-foldimprovementindriftfortheAgilent1260and1290InfinityVWD.BothdetectorswerewithinAgilent’sspecifications.
LimitofdetectionofanthraceneVariablewavelengthdetectorsarefrequentlyusedforqualitycontrolapplications.Onerequirementforensuringbestproductqualityistheabilitytodetectallimpuritiespresentinafinalproduct.Thiscanbedonereli-ably,ifthedetectorexhibitslownoisebehavior.Figure3showstheevaluationofthelimitofdetectionforthe1260and1290InfinityVWD,5pgofanthracenewereinjectedin3μLofacetonitrile.Thelimitofdetectionwas
0.228pgwherebythecalculationwasbasedonthe5pginjection.
0.1
0.08
Earliermodel
Noise:<0.44×10-5AUDrift:<0.99×10-4AU
0.06
0.04
0.02
1260and1290InfinityVWD
0 Noise:<0.126×10-5AU–3.5-timesbetter
Drift:<0.42×10-4AU–2.4-timesbetter
-0.02
-0.04
0
10
20
30
40
50
Time[min]
Figure2
NoiseanddriftofVWDvs.earliermodel.
ChromatographicconditionsColumn: RestrictioncapillaryMobilephase:Water
0.2
0.1
AnthraceneLOD:0.228pg
Noise:0.002mAU
0
-0.1
-0.2
-0.3
0.5
1
1.5
Time[min]
2
2.5
Absorbance[mAU]
Flowrate: 1mL/min
Figure3
Wavelength: 254nmResponsetime:2s
Peakwidth: >0.1minColumntemp.:36°C
Measurementofthelimitofdetectionofanthracene.
Chromatographicconditions
Sample: Anthracene,1.6668pg/μL,5.004pg/3μLColumn: AgilentZORBAXSBC18,2.1x50mm,
1.8μm
Mobilephase:Water/Acetonitrile,30/70Flowrate: 0.5mL/min
Detection:Wavelength251nmPeakwidth:>0.025min(20Hz)Cellvolume:14μL
Pathlength: 10mmInjectionvol.:3μLColumntemp.:36°C
Short0,12mmidcapillarieswereusedtoconnectinjectionvalve,columnanddetector.The1.6μLvolumeheatexchangerwasusedinthedetector.
Absorbance[mAU]
Figure4showsacomparisonoftheAgilent1260and1290InfinityVWDwithanearliermodelfortheevaluationofsignal-to-noiseratio.Anthracenewasusedassamplewherebythesameamountwasinjectedandthesamepeakwidthsettingsusedforbothdetectors.TheresultsshowthattheAgilent1260and1290InfinityVWDshowedbetternoisebehaviorandthesignal-to-noiseratiowasimprovedbyafactorof4.6.
Detectionofimpurities
Figure5showsacomparisonoftheAgilent1260and1290InfinityVWDwithanearliermodelfortheanalysisofimpuritiesatlevelslessthan0.03per-centofthemaincompound.TheimprovednoisebehavioroftheAgilent1260and1290InfinityVWDensuredbetteridentificationandquantitativeresults.Theincreaseinsignal-to-noiseratiowasbyafactorofabout3.
Performancecomparisonbetweenconventionalandultra-fastLC
Absorbance[mAU]
Anotherwaytoincreaseperformanceandsamplethroughputsimultaneouslyistousecolumnswith1.8μmparticlesinsteadof5μmparticle.Figure6showsacomparisonbetweenaconventionalLCapplicationandanultra-fastLCapplication.
A150×4.6mm,5μmcolumnwasusedfortheconventionalLCapplica-tionandtheruntimewas10min.Fortheultra-fastLCapplicationa50×
4.6mm,1.8μmcolumnwasusedand
1.75
1.50
1260and1290InfinityVWD
S/N:507.5
Noise:0.0026mAU
ImprovementFactor:4.6
1.25
1.00
0.75
0.1
0.05
0
-0.05
-0.1
-0.15
-0.2
-0.25
EarliermodelS/N:110.2
Noise:0.01mAU
0.50
0.25
1.41.61.82.02.22.42.62.8
0
-0.25
0
0.5
1
1.5
2
2.5 Time[min]
Figure4
Comparisonofsignal-to-noiseratiousinganthraceneassample.
Chromatographicconditions
Sample: 16.668pg/μL,50.04pg/3μL
Column: AgilentZORBAXSBC18,2.1×50mm,1.8μmMobilephase:Water/Acetonitrile,30/70
Flowrate: 0.5mL/min
Detection: (Oldermodel)251nm,peakwidth>0.025min(14Hz),14μLflowcellvolume,10mmpathlength
(1260and1290InfinityVWD)251nm,peakwidth>0.025min(20Hz),14μLflowcellvolume,10mmpathlength
Injectionvol.:3μLColumntemp.:36°C
1.0
0.8
0.6
0.4
0.2
0
-0.2
-0.4
Oldermodel
Peak1:S/N=3.1,peakwidth=0.0204minPeak5:S/N=4.1,peakwidth=0.0234minNoiseP-to-P:0.025mAU
2
4 5
1
1.0
0.8
0.6
0.4
0.2
0
-0.2
-0.4
2
1260and1290InfinityVWD
Peak1:S/N=8.6,peakwidth=0.0219minPeak5:S/N=12.4,peakwidth=0.0225minNoiseP-to-P:0.0071mAU
4 5
1
0 0.5 1.0 1.5 2.0 2.5 Time[min]
Short0.12mmIDcapillarieswereusedtoconnectinjectionvalve,columnanddetector.The1.6μLvolumeheatexchangerwasusedinthedetector.
Figure5
Analysisofimpuritiesatlevels<0.03%ofmaincomponent.
Chromatographicconditions
Sample: Tramadol,2.112mg/mL,containingfourimpurities(peaks1,2,3and4)Column: AgilentZORBAXSBC-18,4.6×50mm,1.8μm,for600baroperationMobilephase:SolventA:Water+0.2%TFA,SolventB:Acetonitrile+0.16%TFAGradient: 17to45%Bin2.8min,holdfor0.2min
Stoptime: 3min
Posttime: 1min
Flowrate: 2.2mL/min
Injectionvol.:3μL,10swashforexteriorofneedleColumntemp.:30°C
Detection: (1260and1290InfinityVWD)270nm,peakwidth=0.025min(20Hz),10mmpathlength(oldermodel)270nm,peakwidth=0.025min(14Hz),10mmpathlength
Absorbance[mAU]
theruntimewasdecreasedto0.6min.Forthisshortenedruntime,thedatasamplingrateoftheAgilent1290InfinityVWDwasincreasedfrom>0.05min(peakwidth)to>0.0025min.
Increasingthedataratecausesanincreaseinbaselinenoiseandanincreasebyafactoroftwowasobservedinthisexample.Increasingthedataratealsoinfluencesthesignal-to-noiseratio,whichwasmeasuredtobeabout1.5to2timesbetterfortheultra-fastLCapplication.Table2summarizestheresultsofbothapplications.
Atwofoldincreaseinthelimitofdetec-tionwasachievedforthelateelutingpeaks.TheAgilent1260and1290InfinityVWD,whichtypicallydeliverathreefoldincreaseinsignal-to-noiseratio,wereabletotakeadvantageofthecolumnswith1.8μmparticlesandfacilitateda10to20-foldincreaseinspeedandafivefoldincreasein
signal-to-noiseratio.
Detectionlinearity
ThedetectionlinearityoftheAgilent1260and1290InfinityVWDwasdeter-minedusingcaffeine.Elevendifferentconcentrationsfrom0.1to1000μg/mLwereanalyzed(Table3).Overthetest-edconcentrationrangethelinearitywaswithin±5%,(Figure7).
600
1
500
400
Ultra-fastLC
AgilentZORBAXSBC18,50×4.6mm,1.8μmRuntime=0.6min
300
200
5
100
9
0
0.1
250
0.2
1
0.3
0.4 0.5 0.6
200
ConventionalLC
AgilentZORBAXSBC18,150×4.6mm,5μmRuntime=10min
150
100
50
5
9
0
1
2
3
4
5
6
7
8
9Time[min]
Figure6
PerformancecomparisonbetweenconventionalLCandultra-fastLC.
Chromatographicconditionsforultra-fastLC
Sample: Phenonetestmix(orderno.5188-6529),diluted1:10Column: AgilentZORBAXSBC18,50×4.6mm,1.8μmGradient: 50-100%ACNin0.3min
Flowrate: 5mL/min
Stoptime: 0.6minTemperature:60°CInjectionvol.:3μL
Detection: Peakwidth>0.0025min,datarate160Hz,standardcellpathlength10mm
ChromatographicconditionsforconventionalLC
Sample: Phenonetestmix(orderno.5188-6529),diluted1:10Column: AgilentZORBAXSBC18,150×4.6mm,5μmGradient: 35to95%ACNin10min
Flowrate: 1.5mL/min
Stoptime: 10minTemperature:50°CInjectionvol.:3μL
Detection: Peakwidth>0.05min,datarate10Hz,standardcellpathlength10mm
Table2
PerformancecomparisonbetweenconventionalLCandultra-fastLC.
10 500.
Parameter
ConventionalLC
Ultra-fastLC
Calibrationlevel
Amount(μg/mL)
Runtime
10min
0.6min(17
1
0.977
timesfaster)
2
1.953
Peakwidth
3
3.906
peak2
0.0492min
0.00698min
4
7.812
S/Npeak2
1814.9
2001.0
5
15.625
S/Npeak5
1094.6
1618.7
6
31.25
Resolution
7
62.5
peak5
4.24
2.37
8
125.
S/Npeak9
55.8
124.2
9
250.
11 1000.
Table3
Concentrationsusedforlinearityevaluation.
Influenceofdatasamplingrateonresolution,peakwidthandpeakcapacity
Itisimportanttosetthedatasamplingratecorrectlytogeneratesufficientdatapoints.About20datapointsperpeakarerequiredtoobtaincorrect
Responsefactor[amount/area]
1.00E-01
9.00E-02
8.00E-02
7.00E-02
6.00E-02
5.00E-02
4.00E-02
0.00E+00 2.00E+02 4.00E+02 6.00E+02
±5%Error
8.00E+02 1.00E+03 1.20E+03
quantitativeresults.Ifthedatasam-plingrateistoolow,peaksseparatedinthecolumnbecomemergedinthe
Figure7
Amount[μg/mL]
detectorandleadtoincorrectquantifi-cation.Settingthedatasamplingratetoohighcausesanincreaseinbaselinenoise.Toselecttheoptimumdatasam-plingrate,thepeakwidthofthesmall-estpeakshouldbeusedasareferenceandtheratesetaccordingly.Figure8showsanexampleofanultra-fastanalysiswithdifferentdatasamplingratesettings.
InTable4,theresultsarecombinedandshowthatadatasamplingrateof
160Hzisoptimumforultra-fastapplications.
Influenceofdifferentflowcellsonresolution,noiseandsignal-to-noiseratio
AvarietyofflowcellsareavailablefortheAgilent1260and1290InfinityVWD,whichcanbeinstalledusingthesamequickandsimplemountingproce-dure.Theflowcellshaveintegratedradio-frequencyidentification(RFID)tagsthatholdspecificinformationaboutthecellsuchaspartnumber,cellvolume,pathlength,andsoon.AnIDtagreaderinthedetectorcollectsthisinformationandtransfersittothecon-trolsoftware.Table5showsthecellsthatareavailable.
InTable6,recommendationsaremadewhatflowcellmatchesthecolumnused.Ifmorethanoneselectionisappropriate,usethelargerflowcelltogetthebestdetectionlimit.Usethesmallerflowcellforbestpeakresolution.
LinearityofAgilent1260and1290InfinityVWDfrom1to1000μg/mL.
Chromatographicconditions
Sample: Caffeineat11concentrations
Column: AgilentZORBAXSBC18,50×4.6mm,1.8μmMobilephase:Water/Acetonitrile,85/15
Flowrate: 1mL/min
Detection: 272nm,response2s,peakwidth>0.1min,standardflowcellwith14μLvolumeand10mmpathlength
Responsetime=8s,1.25Hz
0
400
0
Responsetime=4s,2.5Hz
500
0
Responsetime=2s,5Hz
Responsetime=1s,10Hz
0
Responsetime=0.5s,20Hz
0
2000
0
Responsetime=0.25s,40Hz
Responsetime=0.12s,80Hz
0
Responsetime=0.06s,160Hz
0
1
2
3
45
6 78
9Responsetime=0.03s,160Hz
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7 Time[min]
Absorbance[mAU]
Injectionvol.:10μLColumntemp.:36°C
Figure8
Influenceofdatasamplingrateonresolutionandpeakwidth.
Chromatographicconditions
Sample: Phenonetestmix(orderno.5188-6529)Column: AgilentZORBAXSBC18,50×4.6mm,1.8μmGradient: 50-100%ACNin0.3min
Flowrate: 5mL/min
Stoptime: 0.8min
Temperature:60°CInjectionvol.:2μL
Detection: Seefigureforresponsetimeanddatasamplingrate,standardflowcellwith14μLvolumeand10mmpathlength
Forultra-fastapplicationswithshortcolumnsandhigherflowrates,theparametersettingsshowninTable7arerecommend.
Flowcellpathlength
Lambert-Beer’slawdefinesalinearrelationshipbetweenabsorbanceandthepathlengthoftheflowcell.
Absorbance(A)=logI0/I=Cdwhere:
Aisdefinedasthequotientoftheintensityofthetransmittedlight,I0,dividedbytheintensityoftheincidentlight,I0.
istheextinctioncoefficient,which
isacharacteristicofagivensub-stanceunderaprecisely-definedsetofconditionsofwavelength,solvent,temperatureandotherparameters.
Cistheconcentrationoftheabsorb-ingspecies(usuallying/Lormg/L).
disthepathlengthofthecellusedforthemeasurement.
Asaresult,flowcellswithlongerpathlengthsyieldhighersignals.Althoughnoiseusuallyincreasesslightlywithincreasingpathlength,thereisagaininsignal-to-noiseratio.Whenincreas-ingthepathlength,thecellvolumeusuallyincreasesaswell.Typically,thiscausesmorepeakdispersion.Asa
rule-of-thumbtheflowcellvolumeshouldbeaboutonethirdofthepeakvolumeathalfheight.
Responsetime(s)
Resolutionpeak5
Peakwidthpeak2(min)
Peakwidthpeak6(min)
0.03(160Hz)
2.61
0.00635(0.381s)
0.0049
0.06(160Hz)
2.56
0.00656
0.005
0.12(80Hz)
2.48
0.00667
0.00521
0.25(40Hz)
2.11
0.00764
0.00642
0.5(20Hz)
1.45
0.0107
0.00976
1(10Hz)
0.89
0.0183
0.0172
2(5Hz)
n.a.
0.0343
4(2.5Hz)
n.a.
8(1.25Hz)
n.a.
Table4
Influenceofresponsetimeonresolutionandpeakwidth.
Celltypestandard
Semi-micro
Micro
Highpressure
Max.pressure[bar]
40
40
120
400
Pathlength[mm]
10
6
3
10
Volume[μL]
14
5
2
10
Table5
Flowcellsfor1260and1290InfinityVWD.
Columnlength
<=5cm
10cm
20cm
>=40cm
Typicalpeakwidth
0.025min
0.05min
min
min
Typicalflowrate
Microflowcell
Recommendedflowcell
Semimicroflowcell
Standardflowcell
0.05-0.2mL/min
Internalcolumndiameter 1.0mm
0.2-0.4mL/min
2.1mm
0.4-0.8mL/min1-5mL/min
3.0mm
4.6mm
Table6
Flowcellrecommendations.
Columninsidediameter
2.1mm
3.0mm
4.6mm
Practicalflowrate(ml/min)
0.4-5
1-5
2-5
Flowcellvolume,pathlength
2μL,3mm
5μL,6mm
14μL,10mm*
*Forultrafastanalysiswithstepgradientsthemicroflowcell(2μL3mm)givesthebestperformance.Iflongercolumns(>50mm)forhigherresolutionareused,thenthenextlargerflowcellisthepreferredchoiceforhighersensitivity.
Table7
Flowcellrecommendationsforultra-fastanalysis.
Parameter
14μLvolumeflowcell,10mmpathlength,
2mL/minflowrate
14μLvolumeflowcell,10mmpathlength,
1mL/minflowrate
μLvolumeflowcell,
mmpathlength,1mL/minflowrate
μLvolumeflowcell,
mmpathlength,1mL/minflowrate
Peakwidthofpeak2
0.0229min
0.0442min
0.0400min
0.0417min
Peakwidthofpeak5
0.0214min
0.0425min
0.0383min
0.0396min
Peakwidthofpeak9
0.0211min
0.0425min
0.0387min
0.0400min
Resolutionofpeak5
4.16
4.06
4.48
4.33
Signal-to-noiseofpeak2
6318.5
4760.5
3389.4
4926.9
Signal-to-noiseofpeak9
365.6
264.5
188.6
271.3
Table8
Influenceofdifferentcelldimensionsonpeakwidth,resolutionandsignal-to-noiseratio.
Figure9andTable8showtheinfluenceofdifferentflowcellsonpeakwidth,signal-to-noiseratio,resolutionandnoise.The14μLvolumeflowcellwasevaluatedusingtwodifferentflowrates.Withaflowrateof2mL/minanda3minutegradient,theperformanceofcolumnswith1.8μmparticleswassig-nificantlybettercomparedtoaflowrateof1mL/minanda6minutegradi-ent.Ataflowrateof1mL/min,the
2μLvolumeflowcellgavesmallerpeakwidthsduetolesspeakdispersionafterthecolumn.Theperformanceofthe
5μLvolumeflowcellwasbetweenthe14and2μLvolumeflowcells.Thedif-ferentpathlengthsyieldedsignificantlydifferentsignal-t
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 閩西職業(yè)技術學院《工程制圖C》2023-2024學年第二學期期末試卷
- 梧州醫(yī)學高等??茖W?!度丝谫Y源與環(huán)境經濟學》2023-2024學年第二學期期末試卷
- 呼倫貝爾職業(yè)技術學院《環(huán)境生物系統(tǒng)》2023-2024學年第二學期期末試卷
- 鄭州電子信息職業(yè)技術學院《鍋爐與鍋爐房工藝C》2023-2024學年第二學期期末試卷
- 廣西幼兒師范高等??茖W?!稛o線網絡安全》2023-2024學年第二學期期末試卷
- 重慶應用技術職業(yè)學院《土木工程軟件應用》2023-2024學年第二學期期末試卷
- 低VOC材料檢測方法-洞察及研究
- 物流公司績效管理制度
- 物流公司門衛(wèi)管理制度
- 物流后勤人員管理制度
- 大學啟示錄:如何讀大學(上海交通大學)【超星爾雅學習通】章節(jié)答案
- 創(chuàng)業(yè)法學江西財經大學【超星爾雅學習通】章節(jié)答案
- 2023年黃大仙救世報
- (完整版)高考必備3500詞
- GB/T 14832-2008標準彈性體材料與液壓液體的相容性試驗
- GB/T 1185-2006光學零件表面疵病
- 濟寧市城市介紹家鄉(xiāng)旅游攻略PPT
- 熊浩演講稿全
- 巡檢培訓課件.ppt
- 北師大版五下書法《第6課戈字旁》課件
- 國家開放大學電大本科《設施園藝學》2023-2024期末試題及答案(試卷代號:1329)
評論
0/150
提交評論