Agilent1200 Infinity系列可變波長探測器的性能特點_第1頁
Agilent1200 Infinity系列可變波長探測器的性能特點_第2頁
Agilent1200 Infinity系列可變波長探測器的性能特點_第3頁
Agilent1200 Infinity系列可變波長探測器的性能特點_第4頁
Agilent1200 Infinity系列可變波長探測器的性能特點_第5頁
已閱讀5頁,還剩3頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

PerformancecharacteristicsoftheAgilent1200InfinitySeriesVariableWavelengthDetectors

Fasterresults,improvedsensitivityandabsolutedatasecurity

TechnicalOverview

Introduction

TheAgilent1200InfinitySeriesVariableWavelengthDetectors(VWD)aredesignedforhighestopticalperformance,compliancewithGLPregulationsandeasymainte-nance.Twoversionsareavailable:theAgilent1260InfinityVWD(G1314F),andtheAgilent1290InfinityVWD(G1314E)withhighsamplingratesforultra-fastHPLCandUHPLC.Thesedetectorsofferthefollowingfeaturesandbenefits:

Highersamplingratesupto160Hzforultra-fastHPLC

(Agilent1290InfinityVWD)orupto80Hz(Agilent1260InfinityVWD)

Datarecoverycard(DRC)providesforunique"data-never-lostinsurance"(Agilent1290InfinityVWD)

Deuteriumlampforhighestintensityandlowestdetectionlimitoverawavelengthrangeof190to600nm

Optionalflow-cellcartridgessuchasstandard(10mmpathlength/14μLvolume),highpressure(10mm/14μL),micro(3mm/2μL)andsemi-micro

(6mm/5μL)areavailableandcanbedeployedaccordingtoapplicationneeds

Easyfrontaccesstoflowcellandlampforfastreplacement

FlowcellandlampwithRFIDtagforsafeidentification

Lampinformation,includingpartnumber,serialnumber,productiondate,numberofignitions,totalburntime

Cellinformation,includingpartnumber,serialnumber,productiondate,nominalpathlength,volume,maximumpressure

Built-inelectronictemperaturecontrol(ETC)forimprovedbaselinestability

Built-inholmiumoxidefilterforfastverificationofwavelengthaccuracy

PAGE

5

Opticaldesign

Figure1showstheopticalsystemoftheAgilent1260and1290InfinityVWD.Itsradiationsourceisadeuteri-um-arcdischargelampfortheultravio-let(UV)wavelengthrangefrom190to600nm.Thelightbeamfromthedeu-teriumlamppassesthroughalens,filterassembly(inopen,cut-offorholmiumoxideposition),entranceslit(1mmstan-dard),sphericalmirror(M1),grating,asecondsphericalmirror(M2),abeamsplitter,andfinallythroughtheflowcelltothesamplediode.Thebeamthroughtheflowcellisabsorbeddependingonthesolutionsinthecell,inwhichUVabsorptiontakesplace,andthesamplephotodiodeconvertstheintensitytoanelectricalsignal.Partofthelightisdirectedtothereferencephotodiodebythebeamsplittertoobtainareferencesignalforcompensationofintensityfluctuationofthelightsource.Aslitinfrontofthereferencephotodiodecutsoutlightofthesamplebandwidth.

Bandwidthistypically6.5nm.Wavelengthselectionismadebyrotat-ingthegrating,whichisdrivendirectlybyasteppermotor.Thisconfigurationallowsfastchangeofthewavelength.Thecut-offfilterismovedintothelightpathabove370nmtoreducehigherorderlight.

Datasamplingrates

Thereisamajortrendtoreduceanaly-sistimesinordertoincreasesamplethroughput.Analysistimesaslowas

0.6minandpeakwidthsof0.4sarenowachievablewithmodernLCequip-mentsuchastheAgilent1290InfinityLCsystem.Thishasplacedhighdemandsonthedatasamplingrate.Detectorsmustbefastenoughtopro-videsufficientdatapointsforthesesmallpeaks.Table1showsthedatasamplingratesettingsoftheAgilent1260and1290InfinityVWD.

Forultra-fastLCapplication,usetheAgilent1290InfinityVWD.Formoreconventionalapplications,theAgilent1260InfinityVWDoffersasufficientlyhighdatasamplingrate.

Thispublicationevaluatesandcom-parestheperformanceoftheAgilent1260InfinityVWDandtheAgilent1290InfinityVWDtotheperformanceofanearlierAgilent1200SeriesVWDmodel.Performancecharacteristicsevaluatedinclude:

Driftandnoise

Limitofdetection(LOD)foranthracene

Detectionofimpuritiesatlevelsbelow0.03%ofthemaincompound

Sensitivityimprovementsbetweenultra-fastLCandconventionalLC

Deuteriumlamp

Cut-offfilterHolmiumoxidefilter

Slit

Samplediode

Mirror1

Flowcell

Beamsplitter

Mirror2

Referencediode

Linearityofcaffeine

Figure1

Opticalsystemof1200SeriesVWDandVWDSLPlus.

Influenceofdatarateonresolution,peakwidthandpeakcapacity

Influenceofdifferentcellsonresolu-tion,noiseandsignal-to-noiseratio

Equipment

AnAgilent1260InfinityBinaryLCsystemwasusedfortheevaluation,comprisingthefollowingmoduleswithfirmwarerevisionsA.06.01orhigher:

Agilent1260InfinityBinaryPumpwithAgilent1260InfinityMicroDegasser

Agilent1260InfinitySeriesHighPerformanceAutosampler

Agilent1260InfinityThermostattedColumnCompartment

Agilent1260InfinityVWDandAgilent1290InfinityVWD

Agilent1200SeriesVWD(earliermodel)

AgilentZORBAXRRHT1.8μmcolumns

1260InfinityVWDPeak

width(min)

Responsetime(s)

Samplingrate(Hz)

1290InfinityVWDPeak

width(min)

Responsetime(s)

Samplingrate

<0.003125

<0.0625

80

<0.0012

<0.03

160

>0.003125

0.0625

80

>0.0012

0.03

160

>0.00625

0.125

80

>0.0025

0.06

160

>0.0125

0.25

40

>0.005

0.12

80

>0.025

0.5

20

>0.01

0.25

40

>0.05

1

10

>0.025

0.5

20

>0.1

2

5

>0.05

1

10

>0.2

4

2.5

>0.1

2

5

>0.4

8

1.25

>0.2

4

2.5

>0.4

8

1.25

Table1

Peakwidths,responsetimesandsamplingratesoftheAgilent1260and1290InfinityVWD.

Noiseanddrift

Absorbance[mAU]

Noiseanddriftarekeyparameterswhenevaluatingtheperformanceofdetectors.Figure2showsthenoiseanddriftbehavioroftheAgilent1260and1290InfinityVWDcomparedtothatoftheearlierAgilent1200SeriesVWDmodel.ThebaselinenoiseoftheAgilent1260and1290InfinityVWDistypicallyafactorofthreetofivetimesbetterthantheearliermodel.Theexperimentaldatapresentedhereshowsanimprovementinbaselinenoisebyafactorof3.4.

Thedriftbehavioralsodependsstronglyonhowsensitivethedetectorreactstochangesinambienttempera-ture.Thedatapresentedhereshowsa2.4-foldimprovementindriftfortheAgilent1260and1290InfinityVWD.BothdetectorswerewithinAgilent’sspecifications.

LimitofdetectionofanthraceneVariablewavelengthdetectorsarefrequentlyusedforqualitycontrolapplications.Onerequirementforensuringbestproductqualityistheabilitytodetectallimpuritiespresentinafinalproduct.Thiscanbedonereli-ably,ifthedetectorexhibitslownoisebehavior.Figure3showstheevaluationofthelimitofdetectionforthe1260and1290InfinityVWD,5pgofanthracenewereinjectedin3μLofacetonitrile.Thelimitofdetectionwas

0.228pgwherebythecalculationwasbasedonthe5pginjection.

0.1

0.08

Earliermodel

Noise:<0.44×10-5AUDrift:<0.99×10-4AU

0.06

0.04

0.02

1260and1290InfinityVWD

0 Noise:<0.126×10-5AU–3.5-timesbetter

Drift:<0.42×10-4AU–2.4-timesbetter

-0.02

-0.04

0

10

20

30

40

50

Time[min]

Figure2

NoiseanddriftofVWDvs.earliermodel.

ChromatographicconditionsColumn: RestrictioncapillaryMobilephase:Water

0.2

0.1

AnthraceneLOD:0.228pg

Noise:0.002mAU

0

-0.1

-0.2

-0.3

0.5

1

1.5

Time[min]

2

2.5

Absorbance[mAU]

Flowrate: 1mL/min

Figure3

Wavelength: 254nmResponsetime:2s

Peakwidth: >0.1minColumntemp.:36°C

Measurementofthelimitofdetectionofanthracene.

Chromatographicconditions

Sample: Anthracene,1.6668pg/μL,5.004pg/3μLColumn: AgilentZORBAXSBC18,2.1x50mm,

1.8μm

Mobilephase:Water/Acetonitrile,30/70Flowrate: 0.5mL/min

Detection:Wavelength251nmPeakwidth:>0.025min(20Hz)Cellvolume:14μL

Pathlength: 10mmInjectionvol.:3μLColumntemp.:36°C

Short0,12mmidcapillarieswereusedtoconnectinjectionvalve,columnanddetector.The1.6μLvolumeheatexchangerwasusedinthedetector.

Absorbance[mAU]

Figure4showsacomparisonoftheAgilent1260and1290InfinityVWDwithanearliermodelfortheevaluationofsignal-to-noiseratio.Anthracenewasusedassamplewherebythesameamountwasinjectedandthesamepeakwidthsettingsusedforbothdetectors.TheresultsshowthattheAgilent1260and1290InfinityVWDshowedbetternoisebehaviorandthesignal-to-noiseratiowasimprovedbyafactorof4.6.

Detectionofimpurities

Figure5showsacomparisonoftheAgilent1260and1290InfinityVWDwithanearliermodelfortheanalysisofimpuritiesatlevelslessthan0.03per-centofthemaincompound.TheimprovednoisebehavioroftheAgilent1260and1290InfinityVWDensuredbetteridentificationandquantitativeresults.Theincreaseinsignal-to-noiseratiowasbyafactorofabout3.

Performancecomparisonbetweenconventionalandultra-fastLC

Absorbance[mAU]

Anotherwaytoincreaseperformanceandsamplethroughputsimultaneouslyistousecolumnswith1.8μmparticlesinsteadof5μmparticle.Figure6showsacomparisonbetweenaconventionalLCapplicationandanultra-fastLCapplication.

A150×4.6mm,5μmcolumnwasusedfortheconventionalLCapplica-tionandtheruntimewas10min.Fortheultra-fastLCapplicationa50×

4.6mm,1.8μmcolumnwasusedand

1.75

1.50

1260and1290InfinityVWD

S/N:507.5

Noise:0.0026mAU

ImprovementFactor:4.6

1.25

1.00

0.75

0.1

0.05

0

-0.05

-0.1

-0.15

-0.2

-0.25

EarliermodelS/N:110.2

Noise:0.01mAU

0.50

0.25

1.41.61.82.02.22.42.62.8

0

-0.25

0

0.5

1

1.5

2

2.5 Time[min]

Figure4

Comparisonofsignal-to-noiseratiousinganthraceneassample.

Chromatographicconditions

Sample: 16.668pg/μL,50.04pg/3μL

Column: AgilentZORBAXSBC18,2.1×50mm,1.8μmMobilephase:Water/Acetonitrile,30/70

Flowrate: 0.5mL/min

Detection: (Oldermodel)251nm,peakwidth>0.025min(14Hz),14μLflowcellvolume,10mmpathlength

(1260and1290InfinityVWD)251nm,peakwidth>0.025min(20Hz),14μLflowcellvolume,10mmpathlength

Injectionvol.:3μLColumntemp.:36°C

1.0

0.8

0.6

0.4

0.2

0

-0.2

-0.4

Oldermodel

Peak1:S/N=3.1,peakwidth=0.0204minPeak5:S/N=4.1,peakwidth=0.0234minNoiseP-to-P:0.025mAU

2

4 5

1

1.0

0.8

0.6

0.4

0.2

0

-0.2

-0.4

2

1260and1290InfinityVWD

Peak1:S/N=8.6,peakwidth=0.0219minPeak5:S/N=12.4,peakwidth=0.0225minNoiseP-to-P:0.0071mAU

4 5

1

0 0.5 1.0 1.5 2.0 2.5 Time[min]

Short0.12mmIDcapillarieswereusedtoconnectinjectionvalve,columnanddetector.The1.6μLvolumeheatexchangerwasusedinthedetector.

Figure5

Analysisofimpuritiesatlevels<0.03%ofmaincomponent.

Chromatographicconditions

Sample: Tramadol,2.112mg/mL,containingfourimpurities(peaks1,2,3and4)Column: AgilentZORBAXSBC-18,4.6×50mm,1.8μm,for600baroperationMobilephase:SolventA:Water+0.2%TFA,SolventB:Acetonitrile+0.16%TFAGradient: 17to45%Bin2.8min,holdfor0.2min

Stoptime: 3min

Posttime: 1min

Flowrate: 2.2mL/min

Injectionvol.:3μL,10swashforexteriorofneedleColumntemp.:30°C

Detection: (1260and1290InfinityVWD)270nm,peakwidth=0.025min(20Hz),10mmpathlength(oldermodel)270nm,peakwidth=0.025min(14Hz),10mmpathlength

Absorbance[mAU]

theruntimewasdecreasedto0.6min.Forthisshortenedruntime,thedatasamplingrateoftheAgilent1290InfinityVWDwasincreasedfrom>0.05min(peakwidth)to>0.0025min.

Increasingthedataratecausesanincreaseinbaselinenoiseandanincreasebyafactoroftwowasobservedinthisexample.Increasingthedataratealsoinfluencesthesignal-to-noiseratio,whichwasmeasuredtobeabout1.5to2timesbetterfortheultra-fastLCapplication.Table2summarizestheresultsofbothapplications.

Atwofoldincreaseinthelimitofdetec-tionwasachievedforthelateelutingpeaks.TheAgilent1260and1290InfinityVWD,whichtypicallydeliverathreefoldincreaseinsignal-to-noiseratio,wereabletotakeadvantageofthecolumnswith1.8μmparticlesandfacilitateda10to20-foldincreaseinspeedandafivefoldincreasein

signal-to-noiseratio.

Detectionlinearity

ThedetectionlinearityoftheAgilent1260and1290InfinityVWDwasdeter-minedusingcaffeine.Elevendifferentconcentrationsfrom0.1to1000μg/mLwereanalyzed(Table3).Overthetest-edconcentrationrangethelinearitywaswithin±5%,(Figure7).

600

1

500

400

Ultra-fastLC

AgilentZORBAXSBC18,50×4.6mm,1.8μmRuntime=0.6min

300

200

5

100

9

0

0.1

250

0.2

1

0.3

0.4 0.5 0.6

200

ConventionalLC

AgilentZORBAXSBC18,150×4.6mm,5μmRuntime=10min

150

100

50

5

9

0

1

2

3

4

5

6

7

8

9Time[min]

Figure6

PerformancecomparisonbetweenconventionalLCandultra-fastLC.

Chromatographicconditionsforultra-fastLC

Sample: Phenonetestmix(orderno.5188-6529),diluted1:10Column: AgilentZORBAXSBC18,50×4.6mm,1.8μmGradient: 50-100%ACNin0.3min

Flowrate: 5mL/min

Stoptime: 0.6minTemperature:60°CInjectionvol.:3μL

Detection: Peakwidth>0.0025min,datarate160Hz,standardcellpathlength10mm

ChromatographicconditionsforconventionalLC

Sample: Phenonetestmix(orderno.5188-6529),diluted1:10Column: AgilentZORBAXSBC18,150×4.6mm,5μmGradient: 35to95%ACNin10min

Flowrate: 1.5mL/min

Stoptime: 10minTemperature:50°CInjectionvol.:3μL

Detection: Peakwidth>0.05min,datarate10Hz,standardcellpathlength10mm

Table2

PerformancecomparisonbetweenconventionalLCandultra-fastLC.

10 500.

Parameter

ConventionalLC

Ultra-fastLC

Calibrationlevel

Amount(μg/mL)

Runtime

10min

0.6min(17

1

0.977

timesfaster)

2

1.953

Peakwidth

3

3.906

peak2

0.0492min

0.00698min

4

7.812

S/Npeak2

1814.9

2001.0

5

15.625

S/Npeak5

1094.6

1618.7

6

31.25

Resolution

7

62.5

peak5

4.24

2.37

8

125.

S/Npeak9

55.8

124.2

9

250.

11 1000.

Table3

Concentrationsusedforlinearityevaluation.

Influenceofdatasamplingrateonresolution,peakwidthandpeakcapacity

Itisimportanttosetthedatasamplingratecorrectlytogeneratesufficientdatapoints.About20datapointsperpeakarerequiredtoobtaincorrect

Responsefactor[amount/area]

1.00E-01

9.00E-02

8.00E-02

7.00E-02

6.00E-02

5.00E-02

4.00E-02

0.00E+00 2.00E+02 4.00E+02 6.00E+02

±5%Error

8.00E+02 1.00E+03 1.20E+03

quantitativeresults.Ifthedatasam-plingrateistoolow,peaksseparatedinthecolumnbecomemergedinthe

Figure7

Amount[μg/mL]

detectorandleadtoincorrectquantifi-cation.Settingthedatasamplingratetoohighcausesanincreaseinbaselinenoise.Toselecttheoptimumdatasam-plingrate,thepeakwidthofthesmall-estpeakshouldbeusedasareferenceandtheratesetaccordingly.Figure8showsanexampleofanultra-fastanalysiswithdifferentdatasamplingratesettings.

InTable4,theresultsarecombinedandshowthatadatasamplingrateof

160Hzisoptimumforultra-fastapplications.

Influenceofdifferentflowcellsonresolution,noiseandsignal-to-noiseratio

AvarietyofflowcellsareavailablefortheAgilent1260and1290InfinityVWD,whichcanbeinstalledusingthesamequickandsimplemountingproce-dure.Theflowcellshaveintegratedradio-frequencyidentification(RFID)tagsthatholdspecificinformationaboutthecellsuchaspartnumber,cellvolume,pathlength,andsoon.AnIDtagreaderinthedetectorcollectsthisinformationandtransfersittothecon-trolsoftware.Table5showsthecellsthatareavailable.

InTable6,recommendationsaremadewhatflowcellmatchesthecolumnused.Ifmorethanoneselectionisappropriate,usethelargerflowcelltogetthebestdetectionlimit.Usethesmallerflowcellforbestpeakresolution.

LinearityofAgilent1260and1290InfinityVWDfrom1to1000μg/mL.

Chromatographicconditions

Sample: Caffeineat11concentrations

Column: AgilentZORBAXSBC18,50×4.6mm,1.8μmMobilephase:Water/Acetonitrile,85/15

Flowrate: 1mL/min

Detection: 272nm,response2s,peakwidth>0.1min,standardflowcellwith14μLvolumeand10mmpathlength

Responsetime=8s,1.25Hz

0

400

0

Responsetime=4s,2.5Hz

500

0

Responsetime=2s,5Hz

Responsetime=1s,10Hz

0

Responsetime=0.5s,20Hz

0

2000

0

Responsetime=0.25s,40Hz

Responsetime=0.12s,80Hz

0

Responsetime=0.06s,160Hz

0

1

2

3

45

6 78

9Responsetime=0.03s,160Hz

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 Time[min]

Absorbance[mAU]

Injectionvol.:10μLColumntemp.:36°C

Figure8

Influenceofdatasamplingrateonresolutionandpeakwidth.

Chromatographicconditions

Sample: Phenonetestmix(orderno.5188-6529)Column: AgilentZORBAXSBC18,50×4.6mm,1.8μmGradient: 50-100%ACNin0.3min

Flowrate: 5mL/min

Stoptime: 0.8min

Temperature:60°CInjectionvol.:2μL

Detection: Seefigureforresponsetimeanddatasamplingrate,standardflowcellwith14μLvolumeand10mmpathlength

Forultra-fastapplicationswithshortcolumnsandhigherflowrates,theparametersettingsshowninTable7arerecommend.

Flowcellpathlength

Lambert-Beer’slawdefinesalinearrelationshipbetweenabsorbanceandthepathlengthoftheflowcell.

Absorbance(A)=logI0/I=Cdwhere:

Aisdefinedasthequotientoftheintensityofthetransmittedlight,I0,dividedbytheintensityoftheincidentlight,I0.

istheextinctioncoefficient,which

isacharacteristicofagivensub-stanceunderaprecisely-definedsetofconditionsofwavelength,solvent,temperatureandotherparameters.

Cistheconcentrationoftheabsorb-ingspecies(usuallying/Lormg/L).

disthepathlengthofthecellusedforthemeasurement.

Asaresult,flowcellswithlongerpathlengthsyieldhighersignals.Althoughnoiseusuallyincreasesslightlywithincreasingpathlength,thereisagaininsignal-to-noiseratio.Whenincreas-ingthepathlength,thecellvolumeusuallyincreasesaswell.Typically,thiscausesmorepeakdispersion.Asa

rule-of-thumbtheflowcellvolumeshouldbeaboutonethirdofthepeakvolumeathalfheight.

Responsetime(s)

Resolutionpeak5

Peakwidthpeak2(min)

Peakwidthpeak6(min)

0.03(160Hz)

2.61

0.00635(0.381s)

0.0049

0.06(160Hz)

2.56

0.00656

0.005

0.12(80Hz)

2.48

0.00667

0.00521

0.25(40Hz)

2.11

0.00764

0.00642

0.5(20Hz)

1.45

0.0107

0.00976

1(10Hz)

0.89

0.0183

0.0172

2(5Hz)

n.a.

0.0343

4(2.5Hz)

n.a.

8(1.25Hz)

n.a.

Table4

Influenceofresponsetimeonresolutionandpeakwidth.

Celltypestandard

Semi-micro

Micro

Highpressure

Max.pressure[bar]

40

40

120

400

Pathlength[mm]

10

6

3

10

Volume[μL]

14

5

2

10

Table5

Flowcellsfor1260and1290InfinityVWD.

Columnlength

<=5cm

10cm

20cm

>=40cm

Typicalpeakwidth

0.025min

0.05min

min

min

Typicalflowrate

Microflowcell

Recommendedflowcell

Semimicroflowcell

Standardflowcell

0.05-0.2mL/min

Internalcolumndiameter 1.0mm

0.2-0.4mL/min

2.1mm

0.4-0.8mL/min1-5mL/min

3.0mm

4.6mm

Table6

Flowcellrecommendations.

Columninsidediameter

2.1mm

3.0mm

4.6mm

Practicalflowrate(ml/min)

0.4-5

1-5

2-5

Flowcellvolume,pathlength

2μL,3mm

5μL,6mm

14μL,10mm*

*Forultrafastanalysiswithstepgradientsthemicroflowcell(2μL3mm)givesthebestperformance.Iflongercolumns(>50mm)forhigherresolutionareused,thenthenextlargerflowcellisthepreferredchoiceforhighersensitivity.

Table7

Flowcellrecommendationsforultra-fastanalysis.

Parameter

14μLvolumeflowcell,10mmpathlength,

2mL/minflowrate

14μLvolumeflowcell,10mmpathlength,

1mL/minflowrate

μLvolumeflowcell,

mmpathlength,1mL/minflowrate

μLvolumeflowcell,

mmpathlength,1mL/minflowrate

Peakwidthofpeak2

0.0229min

0.0442min

0.0400min

0.0417min

Peakwidthofpeak5

0.0214min

0.0425min

0.0383min

0.0396min

Peakwidthofpeak9

0.0211min

0.0425min

0.0387min

0.0400min

Resolutionofpeak5

4.16

4.06

4.48

4.33

Signal-to-noiseofpeak2

6318.5

4760.5

3389.4

4926.9

Signal-to-noiseofpeak9

365.6

264.5

188.6

271.3

Table8

Influenceofdifferentcelldimensionsonpeakwidth,resolutionandsignal-to-noiseratio.

Figure9andTable8showtheinfluenceofdifferentflowcellsonpeakwidth,signal-to-noiseratio,resolutionandnoise.The14μLvolumeflowcellwasevaluatedusingtwodifferentflowrates.Withaflowrateof2mL/minanda3minutegradient,theperformanceofcolumnswith1.8μmparticleswassig-nificantlybettercomparedtoaflowrateof1mL/minanda6minutegradi-ent.Ataflowrateof1mL/min,the

2μLvolumeflowcellgavesmallerpeakwidthsduetolesspeakdispersionafterthecolumn.Theperformanceofthe

5μLvolumeflowcellwasbetweenthe14and2μLvolumeflowcells.Thedif-ferentpathlengthsyieldedsignificantlydifferentsignal-t

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論