遼寧職業(yè)學(xué)院《信息分析與預(yù)測(cè)》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁
遼寧職業(yè)學(xué)院《信息分析與預(yù)測(cè)》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁
遼寧職業(yè)學(xué)院《信息分析與預(yù)測(cè)》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁
遼寧職業(yè)學(xué)院《信息分析與預(yù)測(cè)》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁
遼寧職業(yè)學(xué)院《信息分析與預(yù)測(cè)》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁遼寧職業(yè)學(xué)院《信息分析與預(yù)測(cè)》

2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)分析的關(guān)聯(lián)規(guī)則挖掘中,以下關(guān)于支持度和置信度的說法,錯(cuò)誤的是()A.支持度表示項(xiàng)集在數(shù)據(jù)集中出現(xiàn)的頻率B.置信度表示在包含前提項(xiàng)集的事務(wù)中同時(shí)包含結(jié)果項(xiàng)集的概率C.支持度和置信度越高,關(guān)聯(lián)規(guī)則越有價(jià)值D.只考慮支持度和置信度就可以確定有效的關(guān)聯(lián)規(guī)則2、在數(shù)據(jù)分析的假設(shè)檢驗(yàn)中,假設(shè)要檢驗(yàn)一種新的營(yíng)銷策略是否顯著提高了產(chǎn)品的銷售額。收集了實(shí)施前后的銷售數(shù)據(jù),以下哪種假設(shè)檢驗(yàn)方法可能是合適的選擇?()A.t檢驗(yàn),比較兩組均值B.方差分析,比較多組均值C.卡方檢驗(yàn),檢驗(yàn)分類變量的關(guān)系D.不進(jìn)行假設(shè)檢驗(yàn),主觀判斷營(yíng)銷策略的效果3、假設(shè)要分析一個(gè)游戲的玩家行為數(shù)據(jù),包括游戲時(shí)長(zhǎng)、關(guān)卡完成情況、付費(fèi)行為等,以優(yōu)化游戲設(shè)計(jì)和盈利模式。以下哪個(gè)指標(biāo)可能最能反映玩家的忠誠(chéng)度?()A.游戲時(shí)長(zhǎng)B.付費(fèi)金額C.重復(fù)游玩頻率D.以上都是4、在進(jìn)行數(shù)據(jù)探索性分析時(shí),以下關(guān)于發(fā)現(xiàn)數(shù)據(jù)中的異常值的方法,哪一項(xiàng)是最常用的?()A.計(jì)算數(shù)據(jù)的均值和標(biāo)準(zhǔn)差,超出一定范圍的值視為異常值B.繪制箱線圖,觀察超出箱體范圍的值C.對(duì)數(shù)據(jù)進(jìn)行排序,查看兩端的值D.隨機(jī)抽取部分?jǐn)?shù)據(jù)進(jìn)行檢查5、在數(shù)據(jù)分析中,假設(shè)檢驗(yàn)是一種常用的統(tǒng)計(jì)方法。假設(shè)要檢驗(yàn)一種新的教學(xué)方法是否能顯著提高學(xué)生的成績(jī),以下關(guān)于假設(shè)檢驗(yàn)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.首先需要提出原假設(shè)和備擇假設(shè),然后根據(jù)樣本數(shù)據(jù)計(jì)算檢驗(yàn)統(tǒng)計(jì)量B.如果p值小于預(yù)先設(shè)定的顯著性水平,就拒絕原假設(shè),認(rèn)為新教學(xué)方法有效C.假設(shè)檢驗(yàn)的結(jié)果完全取決于樣本數(shù)據(jù)的大小和分布,與研究問題的實(shí)際情況無關(guān)D.可以通過控制樣本量和顯著性水平來平衡檢驗(yàn)的靈敏度和特異性6、在進(jìn)行數(shù)據(jù)聚類時(shí),需要確定合適的聚類數(shù)量。假設(shè)我們使用K-Means算法進(jìn)行聚類,以下哪種方法可以幫助我們選擇最優(yōu)的K值?()A.肘部法則B.輪廓系數(shù)C.均方誤差D.以上都是7、數(shù)據(jù)分析中,數(shù)據(jù)安全是至關(guān)重要的問題。以下關(guān)于數(shù)據(jù)安全的說法中,錯(cuò)誤的是?()A.數(shù)據(jù)安全包括數(shù)據(jù)的保密性、完整性和可用性等方面B.數(shù)據(jù)安全問題可能會(huì)導(dǎo)致數(shù)據(jù)泄露、篡改和丟失等嚴(yán)重后果C.采取加密、備份和訪問控制等措施可以提高數(shù)據(jù)的安全性D.數(shù)據(jù)安全只需要在數(shù)據(jù)存儲(chǔ)和傳輸過程中關(guān)注,在數(shù)據(jù)分析過程中無需考慮8、假設(shè)要分析某網(wǎng)站不同頁面的訪問量分布情況,以下哪種圖表能夠直觀地展示訪問量的集中程度和離散程度?()A.直方圖B.箱線圖C.小提琴圖D.以上都不是9、在數(shù)據(jù)分析的社交網(wǎng)絡(luò)分析中,假設(shè)要研究一個(gè)社交平臺(tái)上用戶之間的關(guān)系和信息傳播。以下哪個(gè)指標(biāo)或概念對(duì)于理解網(wǎng)絡(luò)結(jié)構(gòu)和影響力可能是重要的?()A.度中心性,衡量節(jié)點(diǎn)的連接數(shù)量B.介數(shù)中心性,反映節(jié)點(diǎn)在路徑中的重要性C.接近中心性,體現(xiàn)節(jié)點(diǎn)與其他節(jié)點(diǎn)的接近程度D.不考慮網(wǎng)絡(luò)結(jié)構(gòu),只關(guān)注用戶發(fā)布的內(nèi)容10、在數(shù)據(jù)分析中,數(shù)據(jù)倉(cāng)庫(kù)是一種重要的存儲(chǔ)和管理數(shù)據(jù)的方式。以下關(guān)于數(shù)據(jù)倉(cāng)庫(kù)的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)倉(cāng)庫(kù)可以將來自不同數(shù)據(jù)源的數(shù)據(jù)整合在一起B(yǎng).數(shù)據(jù)倉(cāng)庫(kù)可以提供高效的數(shù)據(jù)查詢和分析功能C.數(shù)據(jù)倉(cāng)庫(kù)中的數(shù)據(jù)是實(shí)時(shí)更新的,反映了最新的業(yè)務(wù)狀態(tài)D.數(shù)據(jù)倉(cāng)庫(kù)的建設(shè)需要投入大量的時(shí)間和資源11、關(guān)于數(shù)據(jù)分析中的時(shí)間序列分析,假設(shè)要預(yù)測(cè)某股票價(jià)格在未來一段時(shí)間的走勢(shì)。時(shí)間序列數(shù)據(jù)具有季節(jié)性、趨勢(shì)性和隨機(jī)性等特點(diǎn)。以下哪種方法可能更適合進(jìn)行準(zhǔn)確的預(yù)測(cè)?()A.移動(dòng)平均法,平滑數(shù)據(jù)B.指數(shù)平滑法,考慮不同權(quán)重C.ARIMA模型,結(jié)合自回歸和移動(dòng)平均D.不進(jìn)行預(yù)測(cè),隨機(jī)猜測(cè)股票價(jià)格12、在數(shù)據(jù)分析的過程中,數(shù)據(jù)的預(yù)處理和特征工程可能會(huì)占用大量時(shí)間。假設(shè)你面臨時(shí)間緊迫的情況,以下關(guān)于時(shí)間分配的策略,哪一項(xiàng)是最明智的?()A.跳過預(yù)處理和特征工程,直接進(jìn)行建模分析B.減少數(shù)據(jù)清洗的工作,重點(diǎn)放在特征工程上C.合理分配時(shí)間,確保預(yù)處理和特征工程的質(zhì)量,以提高模型性能D.把大部分時(shí)間花在模型選擇和調(diào)優(yōu)上,忽略數(shù)據(jù)準(zhǔn)備13、在數(shù)據(jù)分析的探索性分析階段,假設(shè)面對(duì)一個(gè)包含消費(fèi)者購(gòu)買行為的大型數(shù)據(jù)集,包括購(gòu)買金額、購(gòu)買頻率、購(gòu)買商品類別等多個(gè)變量。為了初步了解數(shù)據(jù)的特征、分布和潛在關(guān)系,以下哪種方法可能最為有效?()A.計(jì)算各個(gè)變量的均值、中位數(shù)和標(biāo)準(zhǔn)差等統(tǒng)計(jì)量B.進(jìn)行相關(guān)性分析,確定變量之間的關(guān)聯(lián)程度C.繪制直方圖和散點(diǎn)圖來觀察變量的分布和關(guān)系D.隨機(jī)抽取部分?jǐn)?shù)據(jù)進(jìn)行簡(jiǎn)單觀察14、在數(shù)據(jù)分析中,數(shù)據(jù)可視化的工具有很多,其中Tableau是一種常用的工具。以下關(guān)于Tableau的描述中,錯(cuò)誤的是?()A.Tableau可以連接多種數(shù)據(jù)源,進(jìn)行數(shù)據(jù)的導(dǎo)入和整合B.Tableau可以制作各種類型的圖表,進(jìn)行數(shù)據(jù)可視化C.Tableau的操作簡(jiǎn)單易學(xué),適用于非專業(yè)用戶D.Tableau只能處理小規(guī)模數(shù)據(jù)集,對(duì)于大規(guī)模數(shù)據(jù)集無法處理15、當(dāng)處理高維度的數(shù)據(jù)時(shí),以下哪種方法可以用于降低數(shù)據(jù)的維度,同時(shí)保留重要的信息?()A.主成分分析B.因子分析C.線性判別分析D.以上都是16、在進(jìn)行數(shù)據(jù)關(guān)聯(lián)分析時(shí),需要找出不同變量之間的關(guān)系。假設(shè)要分析客戶購(gòu)買行為與促銷活動(dòng)之間的關(guān)聯(lián),以下關(guān)于關(guān)聯(lián)分析方法的描述,正確的是:()A.只關(guān)注表面的關(guān)聯(lián),不深入分析內(nèi)在的因果關(guān)系B.不考慮數(shù)據(jù)的分布和異常值,直接進(jìn)行關(guān)聯(lián)分析C.運(yùn)用關(guān)聯(lián)規(guī)則挖掘、相關(guān)性分析等方法,同時(shí)考慮數(shù)據(jù)的特點(diǎn)和業(yè)務(wù)背景,挖掘有價(jià)值的關(guān)聯(lián)模式,并對(duì)結(jié)果進(jìn)行解釋和驗(yàn)證D.認(rèn)為關(guān)聯(lián)分析結(jié)果一定能直接用于制定營(yíng)銷策略,不進(jìn)行進(jìn)一步的評(píng)估和優(yōu)化17、對(duì)于一個(gè)包含大量數(shù)值型數(shù)據(jù)的數(shù)據(jù)集,若要快速找到數(shù)據(jù)的中位數(shù),以下哪種算法較為高效?()A.排序后取中間值B.基于分治思想的算法C.隨機(jī)選擇算法D.以上算法效率差不多18、數(shù)據(jù)分析中的文本分析用于處理非結(jié)構(gòu)化的文本數(shù)據(jù)。假設(shè)要從大量的客戶評(píng)論中提取關(guān)鍵信息和情感傾向,以下關(guān)于文本分析方法的描述,正確的是:()A.僅使用簡(jiǎn)單的關(guān)鍵詞計(jì)數(shù),不考慮文本的語義和語境B.不進(jìn)行文本的預(yù)處理和清洗,直接應(yīng)用分析算法C.采用自然語言處理技術(shù),包括詞法分析、句法分析、情感分析等,對(duì)文本進(jìn)行預(yù)處理、特征提取和建模,以準(zhǔn)確理解和挖掘文本中的信息D.認(rèn)為文本分析結(jié)果一定準(zhǔn)確可靠,不需要人工驗(yàn)證和修正19、在數(shù)據(jù)分析中,假設(shè)檢驗(yàn)是常用的方法之一。在進(jìn)行雙側(cè)檢驗(yàn)時(shí),如果P值小于0.05,我們可以得出什么結(jié)論?()A.拒絕原假設(shè)B.接受原假設(shè)C.無法得出結(jié)論D.原假設(shè)可能成立20、在對(duì)一個(gè)社交網(wǎng)絡(luò)的用戶關(guān)系數(shù)據(jù)進(jìn)行分析,例如好友關(guān)系、群組活動(dòng)等,以發(fā)現(xiàn)社區(qū)結(jié)構(gòu)和關(guān)鍵節(jié)點(diǎn)。以下哪種算法可能在社區(qū)發(fā)現(xiàn)和關(guān)鍵人物識(shí)別中表現(xiàn)出色?()A.PageRank算法B.K-Means算法C.Apriori算法D.以上都不是二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)在數(shù)據(jù)分析中,如何進(jìn)行假設(shè)檢驗(yàn)?請(qǐng)?jiān)敿?xì)說明假設(shè)檢驗(yàn)的步驟、常見的檢驗(yàn)方法(如t檢驗(yàn)、方差分析)及適用場(chǎng)景。2、(本題5分)在數(shù)據(jù)倉(cāng)庫(kù)中,如何進(jìn)行數(shù)據(jù)的一致性和完整性維護(hù)?請(qǐng)說明維護(hù)的策略和方法,并舉例說明。3、(本題5分)在進(jìn)行時(shí)間序列數(shù)據(jù)分析時(shí),如何進(jìn)行季節(jié)性調(diào)整?解釋季節(jié)性調(diào)整的目的和常用方法,并舉例說明。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某電商平臺(tái)的家居用品類目存有銷售數(shù)據(jù),包括品牌、產(chǎn)品類別、價(jià)格、銷量、用戶地域等。分析不同地域用戶對(duì)各品牌和產(chǎn)品類別的購(gòu)買差異及價(jià)格敏感度。2、(本題5分)某網(wǎng)約車平臺(tái)擁有司機(jī)和乘客的數(shù)據(jù),包括接單時(shí)間、行程距離、費(fèi)用、乘客評(píng)價(jià)等。分析司機(jī)的接單時(shí)間分布和行程距離對(duì)費(fèi)用和乘客評(píng)價(jià)的影響。3、(本題5分)一家房地產(chǎn)中介公司擁有房屋租賃數(shù)據(jù),包括房屋位置、戶型、面積、租金、租賃周期等。研究不同位置和戶型的房屋租金與租賃周期的關(guān)系。4、(本題5分)某在線教育平臺(tái)記錄了不同地區(qū)學(xué)生的學(xué)習(xí)數(shù)據(jù),包括課程選擇、學(xué)習(xí)進(jìn)度、考試成績(jī)等。分析如何依據(jù)這些數(shù)據(jù)制定區(qū)域化的教育資源分配策略。5、(本題5分)某電商直播平臺(tái)存有主播的直播數(shù)據(jù),如直播時(shí)長(zhǎng)、觀看人數(shù)、商品銷售額、粉絲互動(dòng)等。分析主播的直播時(shí)長(zhǎng)與商品銷售額之間的相關(guān)性以及粉絲互動(dòng)的影響。四、論述題(本大題共2個(gè)小題,共20分)1、(本題10分)在金融市場(chǎng)的高頻交易中,數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論