




已閱讀5頁(yè),還剩4頁(yè)未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
概率與統(tǒng)計(jì)問題的題型與方法一復(fù)習(xí)目標(biāo):1 了解典型分布列:01分布,二項(xiàng)分布,幾何分布。2 了解離散型隨機(jī)變量的期望值、方差的意義,會(huì)根據(jù)離散型隨機(jī)變量的分布列求出期望值、方差。3 在實(shí)際中經(jīng)常用期望來比較兩個(gè)類似事件的水平,當(dāng)水平相近時(shí),再用方差比較兩個(gè)類似事件的穩(wěn)定程度。4 了解正態(tài)分布的意義,能借助正態(tài)曲線的圖像理解正態(tài)曲線的性質(zhì)。5 了解標(biāo)準(zhǔn)正態(tài)分布的意義和性質(zhì),掌握正態(tài)總體轉(zhuǎn)化為標(biāo)準(zhǔn)正態(tài)總體N(0,1)的公式及其應(yīng)用。6 通過生產(chǎn)過程的質(zhì)量控制圖,了解假設(shè)檢驗(yàn)的基本思想。7 了解相關(guān)關(guān)系、回歸分析、散點(diǎn)圖等概念,會(huì)求回歸直線方程。8 了解相關(guān)系數(shù)的計(jì)算公式及其意義,會(huì)用相關(guān)系數(shù)公式進(jìn)行計(jì)算。了解相關(guān)性檢驗(yàn)的方法與步驟,會(huì)用相關(guān)性檢驗(yàn)方法進(jìn)行檢驗(yàn)。二考試要求:了解隨機(jī)變量、離散型隨機(jī)變量的意義,會(huì)求出某些簡(jiǎn)單的離散型隨機(jī)變量的分布列。 了解離散型隨機(jī)變量的期望值、方差的意義,會(huì)根據(jù)離散型隨機(jī)變量的分布列求出期望值、方差。 會(huì)用抽機(jī)抽樣,系統(tǒng)抽樣,分層抽樣等常用的抽樣方法從總體中抽取樣本。 會(huì)用樣本頻率分布去估計(jì)總體分布。 了解正態(tài)分布的意義及主要性質(zhì)。 了解假設(shè)檢驗(yàn)的基本思想。 會(huì)根據(jù)樣本的特征數(shù)估計(jì)總體。 了解線性回歸的方法。三教學(xué)過程:()基礎(chǔ)知識(shí)詳析隨機(jī)事件和統(tǒng)計(jì)的知識(shí)結(jié)構(gòu):隨機(jī)事件和統(tǒng)計(jì)的內(nèi)容提要 1主要內(nèi)容是離散型隨機(jī)變量的分布列、期望與方差,抽樣方法,總體分布的估計(jì),正態(tài)分布和線性回歸。 2隨機(jī)變量的概率分布 (1)離散型隨機(jī)變量的分布列: P 兩條基本性質(zhì)); P1+P2+=1。 (2)連續(xù)型隨機(jī)變量概率分布: 由頻率分布直方圖,估計(jì)總體分布密度曲線y=f(x); 總體分布密度函數(shù)的兩條基本性質(zhì): f(x) 0(xR); 由曲線y=f(x)與x軸圍成面積為1。 3隨機(jī)變量的數(shù)學(xué)期望和方差 (1)離散型隨機(jī)變量的數(shù)學(xué)期望: ;反映隨機(jī)變量取值的平均水平。 (2)離散型隨機(jī)變量的方差: ;反映隨機(jī)變量取值的穩(wěn)定與波動(dòng),集中與離散的程度。 (3)基本性質(zhì):;。 4三種抽樣方法。 5二項(xiàng)分布和正態(tài)分布 (1)記是n次獨(dú)立重復(fù)試驗(yàn)?zāi)呈录l(fā)生的次數(shù),則B(n,p); 其概率。 期望E=np,方差D=npq。 (2)正態(tài)分布密度函數(shù): 期望E=,方差。 (3)標(biāo)準(zhǔn)正態(tài)分布: 若,則, , 。 6線性回歸: 當(dāng)變量x取值一定時(shí),如果相應(yīng)的變量y的取值帶有一定的隨機(jī)性,那么就說變量y與x具有相關(guān)關(guān)系。對(duì)于它們的一組觀測(cè)值來說,如果與之相應(yīng)的在平面直角坐標(biāo)系中的點(diǎn)大體上集中在一條直線的附近,就說變量y與x之間具有線性相關(guān)關(guān)系。 相關(guān)系數(shù)用來檢驗(yàn)線性相關(guān)顯著水平,通常通過查表取顯著水平0.05自由度n-2的,若為顯著;否則為不顯著。離散型隨機(jī)變量的分布列隨機(jī)變量:如果隨機(jī)試驗(yàn)的結(jié)果可以用一個(gè)變量來表示,那么這樣的變量叫做隨機(jī)變量。隨機(jī)變量最常見的兩種類型,即離散型隨機(jī)變量和連續(xù)型隨機(jī)變量。如果對(duì)于隨機(jī)變量可能取的值,可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量;如果隨機(jī)變量可以取某一區(qū)間內(nèi)的一切值,這樣的隨機(jī)變量叫做連續(xù)型隨機(jī)變量。離散型隨機(jī)變量的分布列:如果離散型隨機(jī)變量的可能取值為xi(i1,2,),由于試驗(yàn)的各個(gè)結(jié)果的出現(xiàn)有一定的概率,于是隨機(jī)變量取每一個(gè)值也有一定的概率P(xi)pi,人們常常習(xí)慣地把它們寫成表格的形式,如:x1x2xiPp1p2pi這種表即為隨機(jī)變量的概率分布,簡(jiǎn)稱為的分布列。分布列的表達(dá)式可有如下幾種:(1)表格形式;(2)一組等式;(3)壓縮為一個(gè)帶“i”的等式。1在實(shí)際問題中,人們常關(guān)心隨機(jī)變量的特征,而不是隨機(jī)變量的具體值。離散型隨機(jī)變量的期望和方差都是隨機(jī)變量的特征數(shù),期望反映了隨機(jī)變量的平均取值,方差與標(biāo)準(zhǔn)差都反映了隨機(jī)變量取值的穩(wěn)定與波動(dòng)、集中與離散的程度。其中標(biāo)準(zhǔn)差與隨機(jī)變量本身有相同的單位。2離散型隨機(jī)變量期望和方差的計(jì)算公式設(shè)離散型隨機(jī)變量的分布列為P(xi)pi,i1,2,則:Ei pi,DiE)2 pii2 pi(E)2E(2)(E)2。3離散型隨機(jī)變量期望和方差的性質(zhì)E (ab)aEb,D (ab)a2 D。4二項(xiàng)分布的期望與方差若B (n,p),則Enp,Dnp (1p)。抽樣方法三種常用抽樣方法:1簡(jiǎn)單隨機(jī)抽樣:設(shè)一個(gè)總體的個(gè)數(shù)為N。如果通過逐個(gè)抽取的方法從中抽取一個(gè)樣本,且每次抽取時(shí)各個(gè)個(gè)體被抽到的概率相等,就稱這樣的抽樣為簡(jiǎn)單隨機(jī)抽樣。實(shí)現(xiàn)簡(jiǎn)單隨機(jī)抽樣,常用抽簽法和隨機(jī)數(shù)表法。2系統(tǒng)抽樣:當(dāng)總體中的個(gè)數(shù)較多時(shí),可將總體分成均衡的幾個(gè)部分,然后按照預(yù)先定出的規(guī)則,從每一部分抽取1個(gè)個(gè)體,得到所需要的樣本,這種抽樣叫做系統(tǒng)抽樣(也稱為機(jī)械抽樣)。系統(tǒng)抽樣的步驟可概括為:(1)將總體中的個(gè)體編號(hào);(2)將整個(gè)的編號(hào)進(jìn)行分段;(3)確定起始的個(gè)體編號(hào);(4)抽取樣本。3分層抽樣:當(dāng)已知總體由差異明顯的幾部分組成時(shí),常將總體分成幾部分,然后按照各部分所占的比進(jìn)行抽樣,這種抽樣叫做分層抽樣,其中所分成的各部分叫做層??傮w分布的估計(jì)總體分布:總體取值的概率分布規(guī)律通常稱為總體分布??傮w密度曲線:當(dāng)樣本容量無(wú)限增大,分組的組距無(wú)限縮小,那么頻率分布直方圖就會(huì)無(wú)限接近于一條光滑曲線,即總體密度曲線。正態(tài)分布正態(tài)分布:如果總體密度曲線是以下函數(shù)的圖象:, 式中的實(shí)數(shù)、(0)是參數(shù),分別表示總體的平均數(shù)與標(biāo)準(zhǔn)差,這個(gè)總體是有無(wú)限容量的抽象總體。其分布叫做正態(tài)分布,常記作N(,2)。的圖象被稱為正態(tài)曲線。特別地,在函數(shù)中,當(dāng)=0,=1時(shí),正態(tài)總體稱為標(biāo)準(zhǔn)正態(tài)總體,這時(shí),相應(yīng)的函數(shù)表達(dá)式是, 相應(yīng)的曲線稱為標(biāo)準(zhǔn)正態(tài)曲線。當(dāng)我們不知道一個(gè)總體的分布時(shí),往往總是從總體中抽取一個(gè)樣本,并用樣本的頻率分布去估計(jì)總體的分布,而且隨著樣本容量越大分組的組距越小,樣本的頻率分布就更加接近總體分布。當(dāng)樣本容量無(wú)限增大且分組的組距無(wú)限縮小時(shí),頻率分布直方圖就會(huì)演變成一條光滑曲線,即反映總體分布的總體密度曲線??梢灾?,反映總體分布的總體密度曲線的形狀是形形色色的,不同形狀的總體密度曲線是不同總體分布的反映,而正態(tài)分布以及反映這種分布的正態(tài)曲線是異彩紛呈的總體分布及總體密度曲線中的一類重要分布。 1正態(tài)分布的重要性 正態(tài)分布是概率統(tǒng)計(jì)中最重要的一種分布,其重要性我們可以從以下兩方面來理解:一方面,正態(tài)分布是自然界最常見的一種分布。一般說來,若影響某一數(shù)量指標(biāo)的隨機(jī)因素很多,而每個(gè)因素所起的作用都不太大,則這個(gè)指標(biāo)服從正態(tài)分布。例如,產(chǎn)品尺寸是一類典型的總體,對(duì)于成批生產(chǎn)的產(chǎn)品,如果生產(chǎn)條件正常并穩(wěn)定,即工藝、設(shè)備、技術(shù)、操作、原料、環(huán)境等可以控制的條件都相對(duì)穩(wěn)定,而且不存在產(chǎn)生系統(tǒng)誤差的明顯因素,那么,產(chǎn)品尺寸的總體分布就服從正態(tài)分布。又如測(cè)量的誤差;炮彈落點(diǎn)的分布;人的生理特征的量:身高、體重等;農(nóng)作物的收獲量等等,都服從或近似服從正態(tài)分布。另一方面,正態(tài)分布具有許多良好的性質(zhì),很多分布可以用正態(tài)分布來近似描述,另外,一些分布又可以通過正態(tài)分布來導(dǎo)出,因此在理論研究中正態(tài)分布也十分重要。 2正態(tài)曲線及其性質(zhì) 對(duì)于正態(tài)分布函數(shù): ,x(-,+) 由于中學(xué)知識(shí)范圍的限制,不必去深究它的來龍去脈,但對(duì)其函數(shù)圖像即正態(tài)曲線可通過描點(diǎn)(或計(jì)算機(jī)中的繪圖工具)畫出課本圖1-4中的圖(1)、(2)、(3),由此,我們不難自己總結(jié)出正態(tài)曲線的性質(zhì)。 3標(biāo)準(zhǔn)正態(tài)曲線 標(biāo)準(zhǔn)正態(tài)曲線N(0,1)是一種特殊的正態(tài)分布曲線,它是本小節(jié)的重點(diǎn)。由于它具有非常重要的地位,已專門制作了“標(biāo)準(zhǔn)正態(tài)分布表”。對(duì)于抽像函數(shù),課本中沒有給出具體的表達(dá)式,但其幾何意義非常明顯,即由正態(tài)曲線N(0,1)、x軸、直線所圍成的圖形的面積。再由N(0,1)的曲線關(guān)于y軸對(duì)稱,可以得出等式,以及標(biāo)準(zhǔn)正態(tài)總體在任一區(qū)間(a,b)內(nèi)取值概率。 4一般正態(tài)分布與標(biāo)準(zhǔn)正態(tài)分布的轉(zhuǎn)化 由于一般的正態(tài)總體其圖像不一定關(guān)于y軸對(duì)稱,所以,研究其在某個(gè)區(qū)間的概率時(shí),無(wú)法利用標(biāo)準(zhǔn)正態(tài)分布表進(jìn)行計(jì)算。這時(shí)我們自然會(huì)思考:能否將一般的正態(tài)總體轉(zhuǎn)化成標(biāo)準(zhǔn)的正態(tài)總體N(0,1)進(jìn)行研究。人們經(jīng)過探究發(fā)現(xiàn):對(duì)于任一正態(tài)總體,其取值小于x的概率。對(duì)于這個(gè)公式,課本中不加證明地給出,只用了“事實(shí)上,可以證明”這幾個(gè)字說明。這表明,對(duì)等式的來由不作要求,只要會(huì)用它求正態(tài)總體在某個(gè)特定區(qū)間的概率即可。 5“小概率事件”和假設(shè)檢驗(yàn)的基本思想 “小概率事件”通常指發(fā)生的概率小于5%的事件,因?yàn)閷?duì)于這類事件來說,在大量重復(fù)試驗(yàn)中,平均每試驗(yàn)20次,才能發(fā)生1次,所以認(rèn)為在一次試驗(yàn)中該事件是幾乎不可能發(fā)生的。這種認(rèn)識(shí)便是進(jìn)行推斷的出發(fā)點(diǎn)。關(guān)于這一點(diǎn)我們要有以下兩個(gè)方面的認(rèn)識(shí):一是這里的“幾乎不可能發(fā)生”是針對(duì)“一次試驗(yàn)”來說的,因?yàn)樵囼?yàn)次數(shù)多了,該事件當(dāng)然是很可能發(fā)生的;二是當(dāng)我們運(yùn)用“小概率事件幾乎不可能發(fā)生的原理”進(jìn)行推斷時(shí),我們也有5%的犯錯(cuò)誤的可能。就是說,這里在概率的意義上所作的推理與過去確定性數(shù)學(xué)中的“若a則b”式的推理有所不同。 課本是借助于服從正態(tài)分布的有關(guān)零件尺寸的例子來介紹假設(shè)檢驗(yàn)的基本思想。進(jìn)行假設(shè)檢驗(yàn)一般分三步: 第一步,提出統(tǒng)計(jì)假設(shè)。課本例子里的統(tǒng)計(jì)假設(shè)是這個(gè)工人制造的零件尺寸服從正態(tài)分布。 第二步,確定一次試驗(yàn)中的取值a是否落入范圍(-3,+3)。 第三步,作出推斷。如果a(-3,+3),接受統(tǒng)計(jì)假設(shè);如果,由于這是小概率事件,就拒絕統(tǒng)計(jì)假設(shè)。 上面這種拒絕統(tǒng)計(jì)假設(shè)的推理,與我們過去學(xué)習(xí)過的反證法有類似之處。事實(shí)上,用反證法證明一個(gè)問題時(shí),先否定待證命題的結(jié)論,這本身看成一個(gè)新的命題,從它出發(fā)進(jìn)行推理,如果出現(xiàn)了矛盾,就把這個(gè)矛盾歸因于前述新命題不正確,從而將它否定。否定了新命題,也就等于證明了原命題的結(jié)論。線性回歸回歸分析:對(duì)于兩個(gè)變量,當(dāng)自變量取值一定時(shí),因變量的取值帶有一定隨機(jī)性的兩個(gè)變量之間的關(guān)系叫相關(guān)關(guān)系或回歸關(guān)系?;貧w直線方程:設(shè)x與y是具有相關(guān)關(guān)系的兩個(gè)變量,且相應(yīng)于n個(gè)觀測(cè)值的n個(gè)點(diǎn)大致分布在某一條直線的附近,就可以認(rèn)為y對(duì)x的回歸函數(shù)的類型為直線型:。其中,。我們稱這個(gè)方程為y對(duì)x的回歸直線方程。 1相關(guān)關(guān)系 研究?jī)蓚€(gè)變量間的相關(guān)關(guān)系是學(xué)習(xí)本節(jié)的目的。對(duì)于相關(guān)關(guān)系我們可以從下三個(gè)方面加以認(rèn)識(shí): (1)相關(guān)關(guān)系與函數(shù)關(guān)系不同。函數(shù)關(guān)系中的兩個(gè)變量間是一種確定性關(guān)系。例如正方形面積S與邊長(zhǎng)x之間的關(guān)系就是函數(shù)關(guān)系。即對(duì)于邊長(zhǎng)x的每一個(gè)確定的值,都有面積S的惟一確定的值與之對(duì)應(yīng)。相關(guān)關(guān)系是一種非確定性關(guān)系,即相關(guān)關(guān)系是非隨機(jī)變量與隨機(jī)變量之間的關(guān)系。例如人的身高與年齡;商品的銷售額與廣告費(fèi)等等都是相關(guān)關(guān)系。 (2)函數(shù)關(guān)系是一種因果關(guān)系,而相關(guān)關(guān)系不一定是因果關(guān)系,也可能是伴隨關(guān)系。例如有人發(fā)現(xiàn),對(duì)于在校兒童,身高與閱讀技能有很強(qiáng)的相關(guān)關(guān)系。然而學(xué)會(huì)新詞并不能使兒童馬上長(zhǎng)高,而是涉及到第三個(gè)因素年齡,當(dāng)兒童長(zhǎng)大一些,他們的閱讀能力會(huì)提高而且由于長(zhǎng)大身高也會(huì)高些。 (3)函數(shù)關(guān)系與相關(guān)關(guān)系之間有著密切聯(lián)系,在一定的條件下可以相互轉(zhuǎn)化。例如正方形面積S與其邊長(zhǎng)x間雖然是一種確定性關(guān)系,但在每次測(cè)量邊長(zhǎng)時(shí),由于測(cè)量誤差等原因,其數(shù)值大小又表現(xiàn)出一種隨機(jī)性。而對(duì)于具有線性關(guān)系的兩個(gè)變量來說,當(dāng)求得其回歸直線后,我們又可以用一種確定性的關(guān)系對(duì)這兩個(gè)變量間的關(guān)系進(jìn)行估計(jì)。 相關(guān)關(guān)系在現(xiàn)實(shí)生活中大量存在,從某種意義上講,函數(shù)關(guān)系是一種理想的關(guān)系模型,而相關(guān)關(guān)系是一種更為一般的情況。因此研究相關(guān)關(guān)系,不僅可使我們處理更為廣泛的數(shù)學(xué)應(yīng)用問題,還可使我們對(duì)函數(shù)關(guān)系的認(rèn)識(shí)上升到一個(gè)新的高度。 2回歸分析 本節(jié)所研究的回歸分析是回歸分析中最簡(jiǎn)單,也是最基本的一種類型一元線性回歸分析。 對(duì)于線性回歸分析,我們要注意以下幾個(gè)方面: (1)回歸分析是對(duì)具有相關(guān)關(guān)系的兩個(gè)變量進(jìn)行統(tǒng)計(jì)分析的方法。兩個(gè)變量具有相關(guān)關(guān)系是回歸分析的前提。 (2)散點(diǎn)圖是定義在具有相關(guān)系的兩個(gè)變量基礎(chǔ)上的,對(duì)于性質(zhì)不明確的兩組數(shù)據(jù),可先作散點(diǎn)圖,在圖上看它們有無(wú)關(guān)系,關(guān)系的密切程度,然后再進(jìn)行相關(guān)回歸分析。 (3)求回歸直線方程,首先應(yīng)注意到,只有在散點(diǎn)圖大至呈線性時(shí),求出的回歸直線方程才有實(shí)際意義,否則,求出的回歸直線方程毫無(wú)意義。 3相關(guān)系數(shù) 有時(shí)散點(diǎn)圖中的各點(diǎn)并不集中在一條直線的附近,仍可以按照求回歸直線方程的步驟求得回歸直線方程。顯然這種情形下求得的回歸直線方程沒有實(shí)際意義。那么,在什么情況下求得的回歸直線方程才能對(duì)相應(yīng)的一組觀測(cè)數(shù)據(jù)具有代表意義?課本中不加證明地給出了相關(guān)系數(shù)的公式。相關(guān)系數(shù)公式的作用在于,我們對(duì)一組數(shù)據(jù)之間的線性相關(guān)程度可作出定量的分析,而不是僅憑畫出散點(diǎn)圖,直覺地從散點(diǎn)圖的形狀粗淺地得出數(shù)據(jù)之間的線性相關(guān)程度。 4線性相關(guān)性檢驗(yàn) 相關(guān)性檢驗(yàn)是一種假設(shè)檢驗(yàn),它給出了一個(gè)具體檢驗(yàn)y與x之間線性相關(guān)與否的具體辦法。限于要求,中學(xué)階段只要求掌握這種檢驗(yàn)方法的操作步驟,而不要求對(duì)這種方法包含的原理進(jìn)行深入研究。其具體檢驗(yàn)的步驟如下: (1)在課本中的附表3中查出與顯著性水平0.05與自由度n-2(n為觀測(cè)值組數(shù))相應(yīng)的相關(guān)系數(shù)臨界值。 (2)根據(jù)公式計(jì)算r的值。 (3)檢驗(yàn)所得結(jié)果。 如果,那么可以認(rèn)為y與x之間的線性相關(guān)關(guān)系不顯著,從而接受統(tǒng)計(jì)假設(shè)。 如果,表明一個(gè)發(fā)生的概率不到5%的事件在一次試驗(yàn)中竟發(fā)生了。這個(gè)小概率事件的發(fā)生使我們有理由認(rèn)為y與x之間不具有線性相關(guān)關(guān)系的假設(shè)是不成立的,拒絕這一統(tǒng)計(jì)假設(shè)也就是表明可以認(rèn)為y與x之間具有線性相關(guān)關(guān)系。 有了相關(guān)性檢驗(yàn)方法后,我們對(duì)一組數(shù)據(jù)作線性回歸分析,只須先對(duì)這組數(shù)據(jù)的線性相關(guān)性進(jìn)行檢驗(yàn)。如若具有線性相關(guān)性,則可依據(jù)求回歸直線方程的方法進(jìn)行求解,而不必像前面那樣,先畫散點(diǎn)圖,再依照散點(diǎn)圖呈直線性后再求回歸直線方程。這樣就使得回歸直線方程更能真實(shí)地反映實(shí)際情況,具有應(yīng)用于實(shí)際的價(jià)值。 注意事項(xiàng)()1由概率的性質(zhì)可知,任一離散型隨機(jī)變量的分布列具有下述兩個(gè)性質(zhì):(1)pi0,i1,2,;(2)p1p21。2若隨機(jī)變量的分布列為:P (k)Cnk pk qn-k。(k0,1,2,n,0p1,q1p,則稱服從二項(xiàng)分布,記作B (n,p),其中n、 p為參數(shù),并記Cnk pk qn-k=b(k;n,p)。對(duì)二項(xiàng)分布來說,概率分布的兩個(gè)性質(zhì)成立。即:(1)P (k)Cnk pk qn-k0,k0,1,2,n;(2)P (k)Cnk pk qn-k(pq) n1。二項(xiàng)分布是一種常見的離散型隨機(jī)變量的分布,它有著廣泛的應(yīng)用。()1三種抽樣方法的共同點(diǎn)都是等概率抽樣,即抽樣過程中每個(gè)個(gè)體被抽取的概率相等,體現(xiàn)了這三種抽樣方法的客觀性和公平性。若樣本容量為n,總體的個(gè)體數(shù)為N,則用這三種方法抽樣時(shí),每一個(gè)個(gè)體被抽到的概率都是。2三種抽樣方法的各自特點(diǎn)、適用范圍、相互聯(lián)系及共同點(diǎn)如下表:類 別共 同 點(diǎn)各 自 特 點(diǎn)相 互 聯(lián) 系適 用 范 圍簡(jiǎn)單隨機(jī)抽樣抽樣過程中每個(gè)個(gè)體被抽取的概率相等從總體中逐個(gè)抽取總體中的個(gè)體數(shù)較少系統(tǒng)抽樣將總體均分成
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 多領(lǐng)域合作與公司戰(zhàn)略試題及答案
- 護(hù)理美學(xué)行姿規(guī)范與實(shí)踐
- 軟件設(shè)計(jì)師考試競(jìng)爭(zhēng)環(huán)境的應(yīng)對(duì)與調(diào)整試題及答案
- 2025年軟件設(shè)計(jì)師考試深度試題與答案
- 校招:網(wǎng)絡(luò)工程面試題目及答案
- 辦公智能化與數(shù)字化教育的協(xié)同發(fā)展
- 高級(jí)算法與應(yīng)用實(shí)例試題及答案
- 2025年法學(xué)概論考試的前沿法律研究及試題及答案
- 孝義消防協(xié)管員面試題及答案
- 小學(xué)消防競(jìng)賽試題及答案
- (全鋼)附著式升降腳手架課件
- 監(jiān)理通知回復(fù)單01
- 憲法學(xué)原理與案例完整ppt課件全套教學(xué)ppt教程
- 講課資料全文解讀《公務(wù)員回避規(guī)定》PPT課件
- 煤炭資源地質(zhì)勘探規(guī)范
- GB∕T 8334-2022 液化石油氣鋼瓶定期檢驗(yàn)與評(píng)定
- 歐洲家族性腺瘤性息肉病處理指南
- 竣工財(cái)務(wù)決算審計(jì)內(nèi)容與重點(diǎn)
- 集成電路單粒子效應(yīng)評(píng)估技術(shù)研究PPT課件
- 心經(jīng)注音版(打印版)
- 入團(tuán)志愿書電子版
評(píng)論
0/150
提交評(píng)論