高等數(shù)學極限總結.doc_第1頁
高等數(shù)學極限總結.doc_第2頁
高等數(shù)學極限總結.doc_第3頁
高等數(shù)學極限總結.doc_第4頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

此文檔收集于網(wǎng)絡,僅供學習與交流,如有侵權請聯(lián)系網(wǎng)站刪除【摘 要】高等數(shù)學教學中對于極限部分的要求很高,這主要是因為其特殊的地位決定的。然而極限部分絕大部分的運算令很多從中學進入高校的學生感到困窘。本文立足教材的基本概念闡述,著重介紹極限運算過程中極具技巧的解決思路。希望以此文能對學習者有所幫助。【關鍵詞】高等數(shù)學 極限 技巧高等數(shù)學極限運算技巧高等數(shù)學的極限與連續(xù)是前幾章的內容,對于剛入高校的學生而言是入門部分的重要環(huán)節(jié)。是“初等數(shù)學”向“高等數(shù)學”的起步階段。一,極限的概念 從概念上來講的話,我們首先要掌握逼近的思想,所謂極限就是當函數(shù)的變量具有某種變化趨勢(這種變化趨勢是具有唯一性),那么函數(shù)的應變量同時具有一種趨勢,而且這種趨勢是與自變量的變化具有對應性。通俗的來講,函數(shù)值因為函數(shù)變量的變化而無限逼近某一定值,我們就將這一定值稱為該函數(shù)在變量產生這種變化時的極限!從數(shù)學式子上來講,逼近是指函數(shù)的變化,表示為。這個問題不再贅述,大家可以參考教科書上的介紹。 二,極限的運算技巧 我在上課時,為了讓學生好好參照我的結論,我夸過這樣一個???,我說,只要你認真的記住這些內容,高數(shù)部分所要求的極限內容基本可以全部解決?,F(xiàn)在想來這不是什么海口,數(shù)學再難也是基本的內容,基本的方法,關鍵是技巧性。我記得blog中我做過一道極限題,當時有網(wǎng)友驚呼說太討巧了!其實不是討巧,是有規(guī)律可循的!今天我寫的內容希望可以對大家的學習有幫助! 我們看到一道數(shù)學題的時候,首先是審題,做極限題,首先是看它的基本形式,是屬于什么形式采用什么方法。這基本上時可以直接套用的。 1,連續(xù)函數(shù)的極限 這個我不細說,兩句話,首先看是不是連續(xù)函數(shù),是連續(xù)函數(shù)的直接帶入自變量。 2,不定型 我相信所有學習者都很清楚不定型的重要性,確實。那么下面詳細說明一些注意點以及技巧。 第一,所有的含有無窮小的,首先要想到等價無窮小代換,因為這是最能簡化運算的。等價代換的公式主要有六個:需要注意的是等價物窮小代換是有適用條件的,即:在含有加減運算的式子中不能直接代換,在部分式子的乘除因子也不能直接代換,那么如果一般方法解決不了問題的話,必須要等價代換的時候,必須拆項運算,不過,需要說明,拆項的時候要小心,必須要保證拆開的每一項極限都存在。此外等價無窮小代換的使用,可以變通一些其他形式,比如:等等。特別強調在運算的之前,檢驗形式,是無窮小的形式才能等價代換。 當然在一些無窮大的式子中也可以去轉化代換,即無窮大的倒數(shù)是無窮小。這需要變通的看問題。 在無窮小的運算中,洛必答法則也是一種很重要的方法,但是洛必答法則適用條件比較單一,就是無窮小比無窮小。比較常見的采用洛必答法則的是無窮小乘無窮大的情況。(特別說明無窮小乘無窮大可以改寫為無窮小比無窮小或者無窮大比無窮大的形式,這根據(jù)做題的需要來進行)。第二,在含有的極限式中,一般可分為下面幾種情況:(1),“/ ”形式如果是冪函數(shù)形式的(包含冪函數(shù)四則運算形式),可以找高次項,提出高次項,這樣其他一切項就都是無窮小了,只有高次項是常數(shù)。比如: ,這道題中,可以看到提出最高次x(注意不是)其他項都是“0”,原來的x都是常數(shù)1了。當然如果分式形式中,只有分子中含有高次項,那么該極限式極限不存在(是無窮大),如果只有分母中含有高次項,那么該極限式極限為0,如果分子分母都含有高次項,我們可以直接去看高次項的系數(shù),基本原理其實就是上面所說的提高次項。比如上面的例子,可以直接寫1/2。如果不是純冪函數(shù)形式,無法用提高次項的方法(提高次項是優(yōu)先使用的方法),使用洛必達也是一種很好的方法。需要強調的是洛必達是一種解決“/ ”或“0/0 ”的基本方法,它的嚴格限制形式只有這兩種,所以比較好觀察。但是多數(shù)時候我們優(yōu)先采用其他的方法來解決,這主要是考慮運算量的問題。(2),“- ”形式“ -”形式不能直接運算,需要轉換形式,即轉換成“/ ”或“0/0 ”的形式,基本解法同上。比如:這道題是轉換形式之后是“/ ”的形式,提高次項解。(3)“ ”形式這也是需要轉換的一種基本形式。因為無窮大與無窮小之間的倒數(shù)關系,所以這種轉換時比較簡單也是比較容易解決的。轉換之后的形式也是“/ ”或“0/0 ”的形式。第三,“ ”這種形式的解決思路主要有兩種。第一種是極限公式,這種形式也是比較直觀的。比如: 這道題的基本接替思路是,檢驗形式是“ ”,然后選用公式,再湊出公式的形式,最后直接套用公式。第二種是取對數(shù)消指數(shù)。簡單來說,“ ”形式指數(shù)的存在是我們解題的主要困難。那么我們直接消掉指數(shù)就可以采用其他方法來解決了。比如上面那道題用取對數(shù)消指數(shù)的方法來解,是這樣的:可以看出盡管思路切入點不一樣,但是這兩種方法有異曲同工之妙。三,極限運算思維的培養(yǎng)極限運算考察的是一種基本能力,所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論