




已閱讀5頁(yè),還剩8頁(yè)未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
數(shù)學(xué)專題三角形中的常用輔助線典型例題人說(shuō)幾何很困難,難點(diǎn)就在輔助線。輔助線,如何添?把握定理和概念。還要刻苦加鉆研,找出規(guī)律憑經(jīng)驗(yàn)。全等三角形輔助線找全等三角形的方法:(1)可以從結(jié)論出發(fā),尋找要證明的相等的兩條線段(或兩個(gè)角)分別在哪兩個(gè)可能全等的三角形中;(2)可以從已知條件出發(fā),看已知條件可以確定哪兩個(gè)三角形全等;(3)可從條件和結(jié)論綜合考慮,看它們能確定哪兩個(gè)三角形全等;(4)若上述方法均不可行,可考慮添加輔助線,構(gòu)造全等三角形。三角形中常見(jiàn)輔助線的作法:延長(zhǎng)中線構(gòu)造全等三角形;利用翻折,構(gòu)造全等三角形;引平行線構(gòu)造全等三角形;作連線構(gòu)造等腰三角形。常見(jiàn)輔助線的作法有以下幾種:(1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對(duì)折”。例1:如圖,ABC是等腰直角三角形,BAC=90,BD平分ABC交AC于點(diǎn)D,CE垂直于BD,交BD的延長(zhǎng)線于點(diǎn)E。求證:BD=2CE。思路分析:1)題意分析:本題考查等腰三角形的三線合一定理的應(yīng)用2)解題思路:要求證BD=2CE,可用加倍法,延長(zhǎng)短邊,又因?yàn)橛蠦D平分ABC的條件,可以和等腰三角形的三線合一定理結(jié)合起來(lái)。解答過(guò)程:證明:延長(zhǎng)BA,CE交于點(diǎn)F,在BEF和BEC中,1=2,BE=BE,BEF=BEC=90,BEFBEC,EF=EC,從而CF=2CE。又1+F=3+F=90,故1=3。在ABD和ACF中,1=3,AB=AC,BAD=CAF=90,ABDACF,BD=CF,BD=2CE。解題后的思考:等腰三角形“三線合一”性質(zhì)的逆命題在添加輔助線中的應(yīng)用不但可以提高解題的能力,而且還加強(qiáng)了相關(guān)知識(shí)點(diǎn)和不同知識(shí)領(lǐng)域的聯(lián)系,為同學(xué)們開(kāi)拓了一個(gè)廣闊的探索空間;并且在添加輔助線的過(guò)程中也蘊(yùn)含著化歸的數(shù)學(xué)思想,它是解決問(wèn)題的關(guān)鍵。(2) 若遇到三角形的中線,可倍長(zhǎng)中線,使延長(zhǎng)線段與原中線長(zhǎng)相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”。例2:如圖,已知ABC中,AD是BAC的平分線,AD又是BC 邊上的中線。求證:ABC是等腰三角形。思路分析:1)題意分析:本題考查全等三角形常見(jiàn)輔助線的知識(shí)。2)解題思路:在證明三角形的問(wèn)題中特別要注意題目中出現(xiàn)的中點(diǎn)、中線、中位線等條件,一般這些條件都是解題的突破口,本題給出了AD又是BC邊上的中線這一條件,而且要求證AB=AC,可倍長(zhǎng)AD得全等三角形,從而問(wèn)題得證。解答過(guò)程:證明:延長(zhǎng)AD到E,使DE=AD,連接BE。又因?yàn)锳D是BC邊上的中線,BD=DC又BDE=CDABEDCAD,故EB=AC,E=2,AD是BAC的平分線1=2,1=E,AB=EB,從而AB=AC,即ABC是等腰三角形。解題后的思考:題目中如果出現(xiàn)了三角形的中線,常加倍延長(zhǎng)此線段,再將端點(diǎn)連結(jié),便可得到全等三角形。(3)遇到角平分線,可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對(duì)折”,所考知識(shí)點(diǎn)常常是角平分線的性質(zhì)定理或逆定理。例3:已知,如圖,AC平分BAD,CD=CB,ABAD。求證:B+ADC=180。思路分析:1)題意分析:本題考查角平分線定理的應(yīng)用。2)解題思路:因?yàn)锳C是BAD的平分線,所以可過(guò)點(diǎn)C作BAD的兩邊的垂線,構(gòu)造直角三角形,通過(guò)證明三角形全等解決問(wèn)題。解答過(guò)程:證明:作CEAB于E,CFAD于F。AC平分BAD,CE=CF。在RtCBE和RtCDF中,CE=CF,CB=CD,RtCBERtCDF,B=CDF,CDF+ADC=180,B+ADC=180。解題后的思考:關(guān)于角平行線的問(wèn)題,常用兩種輔助線;見(jiàn)中點(diǎn)即聯(lián)想到中位線。(4)過(guò)圖形上某一點(diǎn)作特定的平行線,構(gòu)造全等三角形,利用的思維模式是全等變換中的“平移”或“翻轉(zhuǎn)折疊”例4:如圖,ABC中,AB=AC,E是AB上一點(diǎn),F(xiàn)是AC延長(zhǎng)線上一點(diǎn),連EF交BC于D,若EB=CF。求證:DE=DF。思路分析:1)題意分析:本題考查全等三角形常見(jiàn)輔助線的知識(shí):作平行線。2)解題思路:因?yàn)镈E、DF所在的兩個(gè)三角形DEB與DFC不可能全等,又知EB=CF,所以需通過(guò)添加輔助線進(jìn)行相等線段的等量代換:過(guò)E作EG/CF,構(gòu)造中心對(duì)稱型全等三角形,再利用等腰三角形的性質(zhì),使問(wèn)題得以解決。解答過(guò)程:證明:過(guò)E作EG/AC交BC于G,則EGB=ACB,又AB=AC,B=ACB,B=EGB,EGD=DCF,EB=EG=CF,EDB=CDF,DGEDCF,DE=DF。解題后的思考:此題的輔助線還可以有以下幾種作法:例5:ABC中,BAC=60,C=40,AP平分BAC交BC于P,BQ平分ABC交AC于Q,求證:AB+BP=BQ+AQ。思路分析:1)題意分析:本題考查全等三角形常見(jiàn)輔助線的知識(shí):作平行線。2)解題思路:本題要證明的是AB+BP=BQ+AQ。形勢(shì)較為復(fù)雜,我們可以通過(guò)轉(zhuǎn)化的思想把左式和右式分別轉(zhuǎn)化為幾條相等線段的和即可得證??蛇^(guò)O作BC的平行線。得ADOAQO。得到OD=OQ,AD=AQ,只要再證出BD=OD就可以了。解答過(guò)程:證明:如圖(1),過(guò)O作ODBC交AB于D,ADO=ABC=1806040=80,又AQO=C+QBC=80,ADO=AQO,又DAO=QAO,OA=AO,ADOAQO,OD=OQ,AD=AQ,又ODBP,PBO=DOB,又PBO=DBO,DBO=DOB,BD=OD,又BPA=C+PAC=70,BOP=OBA+BAO=70,BOP=BPO,BP=OB,AB+BP=AD+DB+BP=AQ+OQ+BO=AQ+BQ。解題后的思考:(1)本題也可以在AB上截取AD=AQ,連OD,構(gòu)造全等三角形,即“截長(zhǎng)法”。(2)本題利用“平行法”的解法也較多,舉例如下:如圖(2),過(guò)O作ODBC交AC于D,則ADOABO從而得以解決。如圖(5),過(guò)P作PDBQ交AC于D,則ABPADP從而得以解決。小結(jié):通過(guò)一題的多種輔助線添加方法,體會(huì)添加輔助線的目的在于構(gòu)造全等三角形。而不同的添加方法實(shí)際是從不同途徑來(lái)實(shí)現(xiàn)線段的轉(zhuǎn)移的,體會(huì)構(gòu)造的全等三角形在轉(zhuǎn)移線段中的作用。從變換的觀點(diǎn)可以看到,不論是作平行線還是倍長(zhǎng)中線,實(shí)質(zhì)都是對(duì)三角形作了一個(gè)以中點(diǎn)為旋轉(zhuǎn)中心的旋轉(zhuǎn)變換構(gòu)造了全等三角形。(5)截長(zhǎng)法與補(bǔ)短法,具體作法是在某條線段上截取一條線段與特定線段相等,或是將某條線段延長(zhǎng),使之與特定線段相等,再利用三角形全等的有關(guān)性質(zhì)加以說(shuō)明。這種作法,適合于證明線段的和、差、倍、分等類的題目。例6:如圖甲,ADBC,點(diǎn)E在線段AB上,ADE=CDE,DCE=ECB。求證:CD=AD+BC。思路分析:1)題意分析:本題考查全等三角形常見(jiàn)輔助線的知識(shí):截長(zhǎng)法或補(bǔ)短法。2)解題思路:結(jié)論是CD=AD+BC,可考慮用“截長(zhǎng)補(bǔ)短法”中的“截長(zhǎng)”,即在CD上截取CF=CB,只要再證DF=DA即可,這就轉(zhuǎn)化為證明兩線段相等的問(wèn)題,從而達(dá)到簡(jiǎn)化問(wèn)題的目的。解答過(guò)程:證明:在CD上截取CF=BC,如圖乙FCEBCE(SAS),2=1。又ADBC,ADC+BCD=180,DCE+CDE=90,2+3=90,1+4=90,3=4。在FDE與ADE中,F(xiàn)DEADE(ASA),DF=DA,CD=DF+CF,CD=AD+BC。解題后的思考:遇到求證一條線段等于另兩條線段之和時(shí),一般方法是截長(zhǎng)法或補(bǔ)短法:截長(zhǎng):在長(zhǎng)線段中截取一段等于另兩條中的一條,然后證明剩下部分等于另一條;補(bǔ)短:將一條短線段延長(zhǎng),延長(zhǎng)部分等于另一條短線段,然后證明新線段等于長(zhǎng)線段。1)對(duì)于證明有關(guān)線段和差的不等式,通常會(huì)聯(lián)系到三角形中兩線段之和大于第三邊、之差小于第三邊,故可想辦法將其放在一個(gè)三角形中證明。2)在利用三角形三邊關(guān)系證明線段不等關(guān)系時(shí),如直接證明不出來(lái),可連接兩點(diǎn)或延長(zhǎng)某邊構(gòu)成三角形,使結(jié)論中出現(xiàn)的線段在一個(gè)或幾個(gè)三角形中,再運(yùn)用三角形三邊的不等關(guān)系證明。小結(jié):三角形圖中有角平分線,可向兩邊作垂線。也可將圖對(duì)折看,對(duì)稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來(lái)添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。線段和差及倍半,延長(zhǎng)縮短可試驗(yàn)。線段和差不等式,移到同一三角形。三角形中兩中點(diǎn),連接則成中位線。三角形中有中線,延長(zhǎng)中線等中線。預(yù)習(xí)導(dǎo)學(xué)下一講我們就要進(jìn)入八下的學(xué)習(xí)了,八下的第一章是分式。請(qǐng)同學(xué)們預(yù)習(xí)課本,并思考以下問(wèn)題。1、分式的概念是什么?2、分式的乘除法的運(yùn)算法則是什么?同步練習(xí)全等三角形中的常見(jiàn)輔助線的添加方法舉例一 有角平分線時(shí),通常在角的兩邊截取相等的線段,構(gòu)造全等三角形。例:如圖1:已知AD為ABC的中線,且12,34,求證:BECFEF。二、有以線段中點(diǎn)為端點(diǎn)的線段時(shí),常延長(zhǎng)加倍此線段,構(gòu)造全等三角形。例:如圖2:AD為ABC的中線,且12,34,求證:BECFEF三、有三角形中線時(shí),常延長(zhǎng)加倍中線,構(gòu)造全等三角形。例:如圖3:AD為 ABC的中線,求證:ABAC2AD。 圖3第1頁(yè)練習(xí):已知ABC,AD是BC邊上的中線,分別以AB邊、AC邊為直角邊各向形外作等腰直角三角形,如圖4, 求證EF2AD。 四、截長(zhǎng)補(bǔ)短法作輔助線。例如:已知如圖5:在ABC中,ABAC,12,P為AD上任一點(diǎn)。求證:ABACPBPC。五、延長(zhǎng)已知邊構(gòu)造三角形:例如:如圖6:已知ACBD,ADAC于A ,BCBD于B,求證:ADBC第2頁(yè)六、連接四邊形的對(duì)角線,把四邊形的問(wèn)題
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 電子商務(wù)競(jìng)爭(zhēng)分析考核試卷
- 傳感器在智能制造執(zhí)行系統(tǒng)中的無(wú)線通信與網(wǎng)絡(luò)技術(shù)考核試卷
- 游戲治療玩具的互動(dòng)性與教育性研究考核試卷
- 公共交通系統(tǒng)與城市公共交通信息化融合的趨勢(shì)分析考核試卷
- 2025年中國(guó)LED電腦彩色燈數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025年中國(guó)ABS浴缸腿數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025年中國(guó)ADSL調(diào)制解調(diào)器數(shù)據(jù)監(jiān)測(cè)報(bào)告
- 2025年中國(guó)2-硫化二苯并噻唑數(shù)據(jù)監(jiān)測(cè)報(bào)告
- 2025至2030年中國(guó)雞油菌罐頭市場(chǎng)分析及競(jìng)爭(zhēng)策略研究報(bào)告
- 2025至2030年中國(guó)鐵樟實(shí)木地板市場(chǎng)分析及競(jìng)爭(zhēng)策略研究報(bào)告
- 2023年江門(mén)市建筑工匠大比武建筑電工技術(shù)文件
- 衛(wèi)星導(dǎo)航產(chǎn)品培訓(xùn)
- 游戲中的物理奧秘
- 2023-2024學(xué)年廣東省深圳市南山區(qū)八年級(jí)(下)期末歷史試卷
- 食品應(yīng)急演練課件
- 鉗工基礎(chǔ)知識(shí)-刮削
- GB/T 44744-2024糧食儲(chǔ)藏低溫儲(chǔ)糧技術(shù)規(guī)程
- 【2023秋】高校實(shí)驗(yàn)室安全通識(shí)課學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 國(guó)開(kāi)(河南)《公司法律實(shí)務(wù)(本)》形考答案題庫(kù)
- 2024年經(jīng)濟(jì)師考試農(nóng)業(yè)經(jīng)濟(jì)高級(jí)經(jīng)濟(jì)實(shí)務(wù)試卷與參考答案
- 《客至》課件統(tǒng)編版高中語(yǔ)文選擇性必修下冊(cè)-2
評(píng)論
0/150
提交評(píng)論