




已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
教師寄語 1 方程是刻畫現(xiàn)實生活問題的有效模型 2 觀察是獲取數(shù)學(xué)知識的重要途徑 2 1花邊有多寬 花邊有多寬 一塊四周鑲有寬度相等的花邊的地毯如下圖 它的長為 m 寬為 m 如果地毯中央長方形圖案的面積為 m2 則花邊多寬 你怎么解決這個問題 挑戰(zhàn)自我 解 如果設(shè)花邊的寬為xm 那么地毯中央長方形圖案的長為m 寬為m 根據(jù)題意 可得方程 你能化簡這個方程嗎 8 2x 5 2x 8 2x 5 2x 18 5 x x x x 8 2x 5 2x 8 18m2 生活中的數(shù)學(xué) 如圖 一個長為10m的梯子斜靠在墻上 梯子的頂端距地面的垂直距離為8m 如果梯子的頂端下滑1m 那么梯子的底端滑動多少米 解 由勾股定理可知 滑動前梯子底端距墻m 如果設(shè)梯子底端滑動Xm 那么滑動后梯子底端距墻m 根據(jù)題意 可得方程 你能化簡這個方程嗎 6 X 6 72 X 6 2 102 xm 8m 10m 7m 6m 10m 1m 你能行嗎 觀察下面等式 你還能找到其他的五個連續(xù)整數(shù) 使前三個數(shù)的平方和等于后兩個數(shù)的平方和嗎 如果設(shè)五個連續(xù)整數(shù)中的第一個數(shù)為x 那么后面四個數(shù)依次可表示為 你能化簡這個方程嗎 X 1 X 2 X 3 X 4 根據(jù)題意 可得方程 上面的方程都是只含有的 并且都可以化為的形式 這樣的方程叫做一元二次方程 駛向勝利的彼岸 一元二次方程的概念 由上面三個問題 我們可以得到三個方程 把ax bx c a b c為常數(shù) a 稱為一元二次方程的一般形式 其中ax bx c分別稱為二次項 一次項和常數(shù)項 a b分別稱為二次項系數(shù)和一次項系數(shù) 8 2x x 18 即4x2 26x 22 0 x x 1 x 2 x 3 x 即x2 8x 20 0 x 即x2 12x 15 0 上述三個方程有什么共同特點 一個未知數(shù)x 整式方程 ax bx c a b c為常數(shù) a 行家 看 門道 下列方程哪些是一元二次方程 2 2x2 5xy 6y 0 5 x2 2x 3 X2 1 7x2 6x 0 解 1 4 7 6 aX2 bX C 0 7 x2 0 知識的升華 1 把下列方程化為一元二次方程的形式 并寫出它的二次項系數(shù) 一次項系數(shù)和常數(shù)項 3x2 5x 1 0 x2 x 8 0 或 7x2 0 x 4 0 3 5 1 1 1 8 7 0 4 3 5 1 1 1 8 7 0 4 或7x2 4 0 7 0 4 7x2 4 0 內(nèi)涵與外延 2 關(guān)于x的方程 k 3 x2 2x 1 0 當(dāng)k時 是一元二次方程 3 把下列方程化為一般形式 并指出他的項和系數(shù) 3 1 3 4X X2 2 6y2 y 3 X X 2 0 培養(yǎng)能力之陣地 4 把方程 3x 2 2 4 x 3 2化成一元二次方程的一般形式 并寫出它的二次項系數(shù) 一次項系數(shù)和常數(shù)項 解 將原方程化簡為 9x2 12x 4 4 x2 6x 9 9x2 12x 4 9x2 5x2 36x 32 0 二次項系數(shù)為 5 36 32 一次項系數(shù)為 常數(shù)項為 5 36 32 4x2 24x 36 4x2 24x 36 12x 4 0 知識的升華 5 三個連續(xù)整數(shù)兩兩相乘 再求和 結(jié)果為242 這三個數(shù)分別是多少 x x 1 x x 1 x 1 x 1 242 3x2 243 0 即 解 設(shè)中間一個數(shù)為x 則另兩個數(shù)分別為x x 1 依題意得方程 回味無窮 本節(jié)課你又學(xué)會了哪些新知識呢 學(xué)習(xí)了什么是一元二次方程 以及它的一般形式ax bx c a b c為常數(shù) a 和有關(guān)概念 如二次項 一次項 常數(shù)項 二次項系數(shù) 一次項系數(shù) 會用一元二次方程表示實際生活中的數(shù)量關(guān)系你準(zhǔn)備如何去求方程中的未知數(shù)呢 知識的升華 1 P47習(xí)題2 11 2題 祝你成功 再見 知識的升華 1 根據(jù)題意 列出方程 有一面積為54m2的長方形 將它的一邊剪短5m 另一邊剪短2m 恰好變成一個正方形 這個正方形的邊長是多少 解 設(shè)正方形的邊長為xm 則原長方形的長為 x 5 m 寬為 x 2 m 依題意得方程 x 5 x 2 54 即 x2 7x 44 0 2 5 x x X 5 X 2 54m2 解 設(shè)竹竿的長為x尺 則門的寬度為尺 長為尺 依題意得方程 培養(yǎng)能力之源泉 2 從前有一天 一個醉漢拿著竹竿進(jìn)屋 橫拿豎拿都進(jìn)不去 橫著比門框?qū)?尺 豎著比門框高 尺 另一個醉漢教他沿著門的兩個對角斜
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030中國膝關(guān)節(jié)置換術(shù)行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 2025至2030中國脆性X染色體綜合征行業(yè)產(chǎn)業(yè)運行態(tài)勢及投資規(guī)劃深度研究報告
- 2025至2030中國腫瘤分子生物標(biāo)志物行業(yè)產(chǎn)業(yè)運行態(tài)勢及投資規(guī)劃深度研究報告
- 2025至2030中國經(jīng)濟(jì)行業(yè)市場發(fā)展分析及前景趨勢與投資機(jī)會報告
- 2025至2030中國組合天線行業(yè)產(chǎn)業(yè)運行態(tài)勢及投資規(guī)劃深度研究報告
- 2025至2030中國線性速度傳感器行業(yè)市場深度研究及發(fā)展前景投資可行性分析報告
- 精神藥品、麻醉藥品管理培訓(xùn)考試試題測試題庫含答案
- 高素質(zhì)農(nóng)民的職業(yè)技能培訓(xùn)計劃
- 鄉(xiāng)村健康政策解讀
- 2025至2030工業(yè)X射線試驗機(jī)行業(yè)市場深度研究與戰(zhàn)略咨詢分析報告
- 2025年廣東高考政治試卷真題答案詳解講評(課件)
- 卡口及道路交通智能監(jiān)控系統(tǒng)方案設(shè)計
- 2025年家庭照護(hù)師職業(yè)資格考試試題及答案
- 呼吸機(jī)相關(guān)性肺炎的預(yù)防和護(hù)理
- 2025年綏化市中考化學(xué)試題卷(含答案解析)
- 門診口腔院感基礎(chǔ)知識培訓(xùn)
- 國家開放大學(xué)2024年春季學(xué)期期末統(tǒng)一考試《中文學(xué)科論文寫作》試題(試卷代號11332)
- 水不同溫度的熱焓值
- 綠化工程施工技術(shù)方案及措施(可編輯)
- 國航特殊餐食代碼表
- AS9100D體系標(biāo)準(zhǔn)中文版
評論
0/150
提交評論