二次函數(shù)與實際生活的聯(lián)系.doc_第1頁
二次函數(shù)與實際生活的聯(lián)系.doc_第2頁
二次函數(shù)與實際生活的聯(lián)系.doc_第3頁
二次函數(shù)與實際生活的聯(lián)系.doc_第4頁
免費預(yù)覽已結(jié)束,剩余1頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

全國中小學(xué)“教學(xué)中的互聯(lián)網(wǎng)搜索”優(yōu)秀教學(xué)案例評選教案設(shè)計一、 教案背景1,面向?qū)W生: 中學(xué) 2,學(xué)科:數(shù)學(xué)2,課時:13,學(xué)生課前準(zhǔn)備:學(xué)生課前調(diào)查與二次函數(shù)有關(guān)的實際問題二、 教學(xué)課題教養(yǎng)方面:學(xué)會把一些簡單的實際生活中的二次函數(shù)問題抽象轉(zhuǎn)化為數(shù)學(xué)問題,并能應(yīng)用二次函數(shù)的相關(guān)性質(zhì)解決問題,能進(jìn)一步熟練掌握二次函數(shù)解析式的各種求法。教育方面:(1)以學(xué)生已有的生活經(jīng)驗出發(fā),讓學(xué)生親身經(jīng)歷將實際問題抽象成數(shù)學(xué)模型,并進(jìn)行解釋與應(yīng)用的過程,進(jìn)而使學(xué)生獲得對數(shù)學(xué)理解的同時,培養(yǎng)學(xué)生分析問題和解決問題的能力。(2)通過小組合作探索,獲得一些研究問題與合作交流的方法與經(jīng)驗。發(fā)展方面:體驗函數(shù)知識的實際應(yīng)用價值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,從實踐動手當(dāng)中,讓學(xué)生產(chǎn)生對數(shù)學(xué)的興趣,從而培養(yǎng)學(xué)生觀察和推理能力,體驗主動探究的成功快樂。三、 教材分析二次函數(shù)在實際中的應(yīng)用十分廣泛,利潤問題在我們的生活中又無處不在,它們都與二次函數(shù)密不可分,今天就讓我們一起來探索與二次函數(shù)有關(guān)的實際應(yīng)用問題。四、 教學(xué)方法學(xué)生在教師創(chuàng)設(shè)的情景中以問題為中心進(jìn)行自主探究。五、 教學(xué)過程出示噴泉圖象,引入教學(xué)。/showproduct.asp?p_id=2313二次函數(shù)在實際中的應(yīng)用十分廣泛,利潤問題在我們的生活中又無處不在,它們都與二次函數(shù)密不可分,今天就讓我們一起來探索與二次函數(shù)有關(guān)的實際應(yīng)用問題。(一)師生協(xié)作,探索問題。http:/2008./cn/aq/p/2008-08-11/180615990.shtml例1: 某跳水運動員進(jìn)行10米跳臺跳水訓(xùn)練時,身體(看成一點)在空中的運動路線是經(jīng)過原點O的一條拋物線.在跳某規(guī)定動作時,正常情況下,該運動員在空中的最高處距水面32/3米,入水處距池邊的距離為4米,同時,運動員在距水面高度為5米以前,必須完成規(guī)定的翻騰動作,并調(diào)整好入水姿勢,否則就會出現(xiàn)失誤. (1)求這條拋物線的解析式; (2)在某次試跳中,測得運動員在空中運動路線是(1)中的拋物線,且運動員在空中調(diào)整好入水姿勢時,距池邊的水平距離為18/5米,問此次跳水會不會失誤?并通過計算說明理由.在教師的引導(dǎo)下,學(xué)生自主研究、解答本題,并請學(xué)生說出解題思路以及答案,師生共同研究,引導(dǎo)學(xué)生解決實際問題,在此同時,培養(yǎng)用動態(tài)的觀點看待一些事情,提高學(xué)生的建模能力,以及滲透數(shù)形結(jié)合的思想方法。(二)合作學(xué)習(xí),小組匯報廠家個數(shù)(個)1 2 3 4 5 6 年3026221814101. 1平均生產(chǎn)量(萬輛)1 2 3 4 5 6 年3.532.521.51練習(xí)1:某市輕工業(yè)局連續(xù)6年對該市自行車的規(guī)模(產(chǎn)量)進(jìn)行調(diào)查,提供了兩個方面的信息,如甲、乙兩圖. 注甲乙兩圖中的每個黑心點所對應(yīng)的縱坐標(biāo)分別指相應(yīng)年份的每個廠家的平均生產(chǎn)量和自行車廠家個數(shù)。請你根據(jù)提供的信息說明:(1) 第3年該市自行車的生產(chǎn)總量;(2) 經(jīng)調(diào)查,生產(chǎn)規(guī)模最大的年份,每輛自行車可獲得利潤50元。請你求出該年的總利潤(其它支出不計)。(三)自主探究,提煉方法例2:某化工材料經(jīng)銷公司購進(jìn)了一種化工原料共7000千克,購進(jìn)價格為每千克30元。物價部門規(guī)定其銷售單價不得高于每千克70元,也不得低于30元。市場調(diào)查發(fā)現(xiàn):單價定為70元時,日均銷售60千克;單價每降低1元,日均多售出2千克。在銷售過程中,每天還要支出其它費用500元(天數(shù)不足一天時,按整天計算)。設(shè)銷售單價為x元,日均獲利為y元。(1)求y關(guān)于x的二次函數(shù)關(guān)系式,并注明x的取值范圍;(2)將(1)中所求出的二次函數(shù)配方成的形式,寫出頂點坐標(biāo);在圖2所示的坐標(biāo)系中畫出草圖;觀察圖象,指出單價定為多少元時日均獲得最多,是多少?練習(xí)2:某體育用品商場為推銷某一品牌運動服,現(xiàn)做了市場調(diào)查,得到數(shù)據(jù)如下表:賣出價格x(元/件)50515253銷售量p(件)500490480470(1) 以x作為點的橫坐標(biāo),p作為縱坐標(biāo),把上表中的數(shù)據(jù),在平面直角坐標(biāo)系中描出相應(yīng)的點,觀察連接各點所得的圖形,判斷p與x的函數(shù)關(guān)系,并求出p與x的函數(shù)關(guān)系式;(2) 如果這種運動服的買入價為每件40元,試求銷售利潤y(元)與賣出價格x(元/件)的函數(shù)關(guān)系式;(3)在(2)的條件下,當(dāng)賣出價格是多少元時,能獲得最大利潤?對比例1、練習(xí)1、例2、練習(xí)2信息獲取方式,引導(dǎo)學(xué)生自主探究、總結(jié),學(xué)會在各種形式中獲取有用的信息。(四)方法提升,感悟收獲。/i?tn=baiduimage&ct練習(xí)3:有一經(jīng)銷商,按市場價收購了一種活蟹1000千克,放養(yǎng)在塘內(nèi),此時市場價為每千克30元。據(jù)測算,此后每千克活蟹的市場價,每天可上升1元,但是,放養(yǎng)一天需各種費用支出400元,且平均每天還有10千克蟹死去,假定死蟹均于當(dāng)天全部售出,售價都是每千克20元(放養(yǎng)期間蟹的重量不變). 設(shè)x天后每千克活蟹市場價為P元,寫出P關(guān)于x的函數(shù)關(guān)系式. 如果放養(yǎng)x天將活蟹一次性出售,并記1000千克蟹的銷售總額為Q元,寫出Q關(guān)于x的函數(shù)關(guān)系式。 該經(jīng)銷商將這批蟹放養(yǎng)多少天后出售,可獲最大利潤,(利潤=銷售總額-收購成本-費用)?最大利潤是多少?引導(dǎo)學(xué)生獨立完成后,4人一組交流討論,找出答案曾經(jīng)出現(xiàn)差異的組談?wù)劷涣髦蟮慕Y(jié)果。引導(dǎo)學(xué)生利用函數(shù)性質(zhì)解決問題時應(yīng)當(dāng)注意自變量的取值范圍。培養(yǎng)用動態(tài)的觀點看待一些事情,提高學(xué)生的建模能力,滲透數(shù)形結(jié)合的思想方法。通過合作學(xué)習(xí),小組匯報等手段,領(lǐng)悟列函數(shù)關(guān)系式和利用函數(shù)性質(zhì)解決問題時注意事項。(五)感悟與收獲作業(yè)作業(yè)1:某公司推出了一種高效環(huán)保型洗滌用品,年初上市后,公司經(jīng)歷了從虧損到盈利的過程下面的二次函數(shù)圖象(部分)刻畫了該公司年初以來累積利潤s(萬元)與銷售時間t(月)之間的關(guān)系(即前t個月的利潤總和s與t之間的關(guān)系)根據(jù)圖象提供的信息,解答下列問題: (1)由已知圖象上的三點坐標(biāo),求累積利潤s(萬元)與時間t(月)之間的函數(shù)關(guān) 3 4 5 6-1-2-3s(萬元)t(月)O432112 系式;(2)求截止到幾月末公司累積利潤可達(dá)到30萬元;(3)求第8個月公司所獲利潤是多少萬元?作業(yè)2:某公司試銷一種成本為30元/件的新產(chǎn)品,按規(guī)定試銷時的銷售單價不低于成本單價,又不高于80元/件,試銷中每天的銷售量y(件)與銷售單價x(元/件)滿足下表中的一次函數(shù)關(guān)系。x(元/件)3540455055y(件)550500450400350(1) 試求y與x之間的函數(shù)表達(dá)式;(2) 設(shè)公司試銷該產(chǎn)品每天獲得的毛利潤為s(元),試求s與x之間的函數(shù)表達(dá)式;(3) 當(dāng)銷售單價定為多少時,該公司試銷這種產(chǎn)品每天獲得的毛利潤最大?最大利潤是多少?此時每天的銷售量是多少?EF作業(yè)3:在青島市開展的創(chuàng)城活動中,某居民小區(qū)要在一塊一邊靠墻(墻長15m)的空地上修建一個矩形花園 ABCD,花園的一邊靠墻,中間用柵欄隔開分別種兩種不同的花卉,柵欄總長為60m(如圖所示)。若設(shè)花園的 BC 邊長為 x (m),花園的面積為 y (m )。(1)求y 與 x之間的函數(shù)關(guān)系式,并寫出自變量 x 的取值范圍;(2)滿足條件的花園面積能達(dá)到300m嗎?若能,求出此時x的值;若不能,說明理由;(3)根據(jù)(1)中求得的函數(shù)關(guān)系式,描述其圖象的變化趨勢;并結(jié)合題意判斷當(dāng) x 取何值時,花園的面積最大?最大面積為多少?附板書設(shè)計:二次函數(shù)實際應(yīng)用與生活聯(lián)系構(gòu)建函數(shù)圖象解析式求法最值注意問題六、 教學(xué)反思二次函數(shù)在實際中的應(yīng)用十分廣泛

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論