




已閱讀5頁(yè),還剩5頁(yè)未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
IEEETRANSACTIONSONROBOTICS,VOL.25,NO.4,AUGUST2009851Vision-Based,DistributedControlLawsforMotionCoordinationofNonholonomicRobotsNimaMoshtagh,Member,IEEE,NathanMichael,Member,IEEE,AliJadbabaie,SeniorMember,IEEE,andKostasDaniilidis,SeniorMember,IEEEAbstractInthispaper,westudytheproblemofdistributedmo-tioncoordinationamongagroupofnonholonomicgroundrobots.Wedevelopvision-basedcontrollawsforparallelandbalancedcir-cularformationsusingaconsensusapproach.Theproposedcon-trollawsaredistributedinthesensethattheyrequireinformationonlyfromneighboringrobots.Furthermore,thecontrollawsarecoordinate-freeanddonotrelyonmeasurementorcommunica-tionofheadinginformationamongneighborsbutinsteadrequiremeasurementsofbearing,opticalflow,andtimetocollision,allofwhichcanbemeasuredusingvisualsensors.Collision-avoidancecapabilitiesareaddedtotheteammembers,andtheeffectivenessofthecontrollawsaredemonstratedonagroupofmobilerobots.IndexTermsCooperativecontrol,distributedcoordination,vision-basedcontrol.I.INTRODUCTIONCOOPERATIVEcontrolofmultipleautonomousagentshasbecomeavibrantpartofroboticsandcontroltheoryresearch.Themainunderlyingthemeofthislineofresearchistoanalyzeand/orsynthesizespatiallydistributedcontrolar-chitecturesthatcanbeusedformotioncoordinationoflargegroupsofautonomousvehicles.Someofthisresearchfocussesonflockingandformationcontrol9,14,16,22,31,andsynchronization2,39,whileothersfocusonrendezvous,distributedcoverage,anddeployment1,5.Akeyassump-tionimpliedinallofthepreviousreferencesisthateachvehicleorrobot(hereaftercalledanagent)communicatesitspositionand/orvelocityinformationtoitsneighbors.Inspiredbythesocialaggregationphenomenainbirdsandfish6,30,researchersinroboticsandcontroltheoryhaveManuscriptreceivedFebruary23,2008;revisedJanuary31,2009.Firstpub-lishedJune10,2009;currentversionpublishedJuly31,2009.ThispaperwasrecommendedforpublicationbyAssociateEditorZ.-W.LuoandEdi-torJ.-P.Laumonduponevaluationofthereviewerscomments.TheworkofA.JadbabaiewassupportedinpartbytheArmyResearchOfficeMultidisciplinaryUniversityResearchInitiative(ARO/MURI)underGrantW911NF-05-1-0381,inpartbytheOfficeofNavalResearch(ONR)/YoungIn-vestigatorProgram542371,inpartbyONRN000140610436,andinpartunderContractNSF-ECS-0347285.TheworkofK.DaniilidiswassupportedinpartunderContractNSF-IIS-0083209,inpartunderContractNSF-IIS-0121293,inpartunderContractNSF-EIA-0324977,andinpartunderContractARO/MURIDAAD19-02-1-0383.N.MoshtaghwaswiththeGeneralRobotics,Automation,Sensing,andPer-ceptionLaboratory,UniversityofPennsylvania,Philadelphia,PA19104USA.HeisnowwithScientificSystemsCompany,Inc.,Woburn,MA01801USA(e-mail:).N.Michael,A.Jadbabaie,andK.DaniilidisarewiththeGeneralRobotics,Automation,Sensing,andPerceptionLaboratory,UniversityofPennsylva-nia,Philadelphia,PA19104USA(e-mail:;;).Colorversionsofoneormoreofthefiguresinthispaperareavailableonlineat.DigitalObjectIdentifier10.1109/TRO.2009.2022439developedtools,methods,andalgorithmsfordistributedmo-tioncoordinationofmultivehiclesystems.Twomaincollectivemotionsthatareobservedinnatureareparallelmotionandcircularmotion21.Onecaninterpretstabilizingthecircularformationasanexampleofactivityconsensus,i.e.,individualsare“movingaround”together.Stabilizingtheparallelforma-tionisanotherformofactivityconsensusinwhichindividuals“moveoff”together33.Circularformationsareobservedinfishschooling,whichisawell-studiedtopicinecologyandevolutionarybiology6.Inthispaper,wepresentasetofcontrollawsforcoordinatedmotions,suchasparallelandcircularformations,foragroupofplanaragentsusingpurelylocalinteractions.Thecontrollawsareintermsofshapevariables,suchastherelativedistancesandrelativeheadingsamongtheagents.However,theseparam-etersarenotreadilymeasurableusingsimpleandbasicsensingcapabilities.Thismotivatestherewritingofthederivedcontrollawsintermsofbiologicallymeasurableparameters.Eachagentisassumedtohaveonlymonocularvisionandisalsocapableofmeasuringbasicvisualquantities,suchasbearingangle,opti-calflow(bearingderivative),andtimetocollision.Rewritingthecontrolinputsintermsofquantitiesthatarelocallymeasurableisequivalenttoexpressingtheinputsinthelocalbodyframe.Suchachangeofcoordinatesystemfromaglobalframetoalocalframeprovidesuswithabetterintuitiononhowsimilarbehaviorsarecarriedoutinnature.Verificationofthetheorythroughmultirobotexperimentsdemonstratedtheeffectivenessofthevision-basedcontrollawstoachievethedesiredformations.Ofcourse,inreality,anyformationcontrolrequirescollisionavoidance,andindeed,collisionavoidancecannotbedonewithoutrange.Inordertoimprovetheexperimentalresults,weprovidedinteragent-collision-avoidancepropertiestotheteammembers.Inthispaper,weshowthatthetwotasksofformationkeepingandcollisionavoidancecanbedonewithdecoupledadditivetermsinthecontrollaw,wherethetermsforkeepingparallelandcircularformationsdependonlyonvisualparameters.Thispaperisorganizedasfollows.InSectionII,wereviewanumberofimportantrelatedworks.Somebackgroundinfor-mationongraphtheoryandothermathematicaltoolsusedinthispaperareprovidedinSectionIII.TheproblemstatementisgiveninSectionIV.InSectionsVandVI,wepresentthecontrollersthatstabilizeagroupofmobileagentsintoparallelandbalancedcircularformations,respectively.InSectionVII,wederivethevision-basedcontrollersthatareintermsofthevisualmeasurementsoftheneighboringagents.InSectionVIII,collision-avoidancecapabilitiesareaddedtothecontrollaws,andtheireffectivenessistestedonrealrobots.1552-3098/$26.002009IEEEAuthorizedlicenseduselimitedto:NanchangUniversity.DownloadedonJanuary12,2010at20:02fromIEEEXplore.Restrictionsapply.852IEEETRANSACTIONSONROBOTICS,VOL.25,NO.4,AUGUST2009II.RELATEDWORKANDCONTRIBUTIONSTheprimarycontributionofthispaperisthepresentationofsimplecontrollawstoachieveparallelandcircularformationsthatrequireonlyvisualsensing,i.e.,theinputsareintermsofquantitiesthatdonotrequirecommunicationamongnearestneighbors.IncontrastwiththeworkofJusthandKrishnaprasad17,MoshtaghandJadbabaie27,Paleyetal.32,33,andSepulchreetal.35,whereitisassumedthateachagenthasaccesstothevaluesofitsneighborspositionsandvelocities,wedesigndistributedcontrollawsthatuseonlyvisualcluesfromnearestneighborstoachievemotioncoordination.Ourapproachonderivingthevision-basedcontrollawscanbeclassifiedasanimage-basedvisualseroving41.Inimage-basedvisualservoing,featuresareextractedfromimages,andthenthecontrolinputiscomputedasafunctionoftheimagefeatures.In8,12,and38,authorsuseomnidirectionalcam-erasastheonlysensorforrobots.In8and38,inputoutputfeedbacklinearizationisusedtodesigncontrollawsforleader-followingandobstacleavoidance.However,theyassumethataspecificverticalposeofanomnidirectionalcameraallowsthecomputationofbothbearinganddistance.IntheworkofPrattichizzoetal.12,thedistancemeasurementisnotused;however,theleaderusesextendedKalmanfilteringtolocalizeitsfollowers,andcomputesthecontrolinputsandguidestheformationinacentralizedfashion.Inourpaper,thecontrolar-chitectureisdistributed,andwedesigntheformationcontrollersbasedonthelocalinteractionamongtheagentssimilartothatof14and22.Furthermore,forourvision-basedcontrollers,nodistancemeasurementisrequired.In25and34,circularformationsofamultivehiclesys-temundercyclicpursuitisstudied.Theirproposedstrategyisdistributedandsimplebecauseeachagentneedstomeasuretherelativeinformationfromonlyoneotheragent.Itisalsoshownthattheformationequilibriaofthemultiagentsystemaregeneralizedpolygons.Incontrastto25,ourcontrollawisanonlinearfunctionofthebearingangles,andasaresult,oursystemconvergestoadifferentsetofstableequilibria.III.BACKGROUNDInthissection,webrieflyreviewanumberofimportantcon-ceptsregardinggraphtheoryandregularpolygonsthatweusethroughoutthispaper.A.GraphTheoryAn(undirected)graphGconsistsofavertexsetVandanedgesetE,whereanedgeisanunorderedpairofdistinctverticesinG.Ifx,yVand(x,y)E,thenxandyaresaidtobeadjacent,orneighbors,andwedenotethisbywritingxy.Thenumberofneighborsofeachvertexisitsdegree.Apathoflengthrfromvertexxtovertexyisasequenceofr+1distinctverticesthatstartwithxandendwithysuchthatconsecutiveverticesareadjacent.IfthereisapathbetweenanytwoverticesofagraphG,thenGissaidtobeconnected.TheadjacencymatrixA(G)=aijofan(undirected)graphGisasymmetricmatrixwithrowsandcolumnsindexedbytheverticesofG,suchthataij=1ifvertexiandvertexjareneighbors,andaij=0otherwise.Wealsoassumethataii=0foralli.ThedegreematrixD(G)ofagraphGisadiagonalmatrixwithrowsandcolumnsindexedbyV,inwhichthe(i,i)-entryisthedegreeofvertexi.ThesymmetricsingularmatrixdefinedasL(G)=D(G)A(G)iscalledtheLaplacianofG.TheLaplacianmatrixcapturesmanytopologicalpropertiesofthegraph.TheLaplacianLisapositive-semidefinitematrix,andthealgebraicmultiplicityofitszeroeigenvalue(i.e.,thedimensionofitskernel)isequaltothenumberofconnectedcomponentsinthegraph.Then-dimensionaleigenvectorassociatedwiththezeroeigenvalueisthevectorofones,1n=1,.,1T.Formoreinformationongraphtheory,see13.B.RegularPolygonsLetd1andnanddarecoprime,thentheedgesintersect,andthepolygonisastar.Ifnanddhaveacommonfactorl1,thenthepolygonconsistsofltraversalsofthesamepolygonwithn/lverticesandedges.Ifd=n,thepolygonn/ncorrespondstoallpointsatthesamelocation.Ifd=n/2(withneven),thenthepolygonconsistsoftwoendpointsandalinebetweenthem,withpointshavinganevenindexononeendandpointshavinganoddindexontheother.Formoreinformationonregulargraphs,see7.IV.PROBLEMSTATEMENTConsideragroupofnunit-speedplanaragents.Eachagentiscapableofsensinginformationfromitsneighbors.Theneigh-borhoodsetofagenti,thatis,Ni,isthesetofagentsthatcanbe“seen”byagenti.Theprecisemeaningof“seeing”willbeclarifiedlater.Thesizeoftheneighborhooddependsonthechar-acteristicsofthesensors.TheneighboringrelationshipbetweenagentscanbeconvenientlydescribedbyaconnectivitygraphG=(V,E,W).Definition1(Connectivitygraph):TheconnectivitygraphG=(V,E,W)isagraphconsistingof1)asetofverticesVindexedbythesetofmobileagents;2)asetofedgesE=(i,j)|i,jV,andij;3)asetofpositiveedgeweightsforeachedge(i,j).TheneighborhoodofagentiisdefinedbyNi.=j|ijVi.Letrirepresentthepositionofagenti,andletvibeitsvelocityvector.Thekinematicsofeachunit-speedagentisAuthorizedlicenseduselimitedto:NanchangUniversity.DownloadedonJanuary12,2010at20:02fromIEEEXplore.Restrictionsapply.MOSHTAGHetal.:VISION-BASED,DISTRIBUTEDCONTROLLAWSFORMOTIONCOORDINATIONOFNONHOLONOMICROBOTS853Fig.1.TrajectoryofeachagentisrepresentedbyaplanarFrenetframe.givenbyri=vivi=ivivi=ivi(1)whereviistheunitvectorperpendiculartothevelocityvectorvi(seeFig.1).Theorthogonalpairvi,viformsabodyframeforagenti.Werepresentthestackvectorofallthevelocitiesbyv=vT1,.,vTnTR2n1.Thecontrolinputforeachagentistheangularvelocityi.Sinceitisassumedthattheagentsmovewithconstantunitspeed,theforceappliedtoeachagentmustbeperpendiculartoitsvelocityvector,i.e.,theforceoneachagentisagyroscopicforce,anditdoesnotchangeitsspeed(andhence,itskineticenergy).Thus,iservesasasteeringcontrol16foreachagent.Letusformallydefinetheformationsthatwearegoingtoconsider.Definition2(Parallelformation):Theconfigurationinwhichtheheadingsofallagentsarethesameandvelocityvectorsarealignediscalledtheparallelformation.Notethatinthisdefinition,wedonotconsiderthevalueoftheagreeduponvelocitybutjustthefactthattheagreementhasbeenreached.Attheequilibrium,therelativedistancesoftheagentsdeterminetheshapeoftheformation.Anotherinterestingfamilyofformationsisthebalancedcircularformation.Definition3(Balancedcircularformation):Theconfigurationwheretheagentsaremovingonthesamecirculartrajectoryandthegeometriccenteroftheagentsisfixediscalledthebalancedcircularformation.Theshapeofsuchaformationcanberepresentedbyanappropriateregularpolygon.Inthefollowingsections,westudyeachformationanddesignitscorrespondingdistributedcontrollaw.V.PARALLELFORMATIONSOurgoalinthissectionistodesignacontrollawforeachagentsothattheheadingsofthemobileagentsreachanagree-ment,i.e.,theirvelocityvectorsarealigned,thusresultinginaswarm-likepattern.ForanarbitraryconnectivitygraphG,con-sidertheLaplacianmatrixL.We,therefore,defineameasureofmisalignmentasfollows27,35:w(v)=12summationdisplayij|vivj|2=12v,Lv(2)wherethesummationisoverallthepairs(i,j)E,andL=LI2R2n2n,withI2beingthe22identitymatrix.Thetimederivativeofw(v)isgivenbyw(v)=nsummationdisplayi=1vi,(Lv)i=nsummationdisplayi=1ivi,(Lv)iwhere(Lv)iR2isthesubvectorofLvassociatedwiththeithagent.Thus,thefollowinggradientcontrollawguaranteesthatthepotentialw(v)decreasesmonotonically:i=vi,(Lv)i=summationdisplayjNivi,vij(3)where0isthegain,andvij=vjvi.Remark1:Letirepresenttheheadingofagentiasmeasuredinafixedworldframe(seeFig.1).Theunitvelocityvectorvianditsorthogonalvectorviaregivenbyvi=cosisiniTandvi=sinicosiT.Thus,thecontrolinput(3)becomesi=summationdisplayjNisin(ij),0.(6)Thefollowingtwotheorems28presenttheresultswhenbalancedcircularformationsareattainedforagroupofunit-speedagentswithfixedconnectivitygraphs.Theorem2isforthecasewhenGisacompletegraph,andTheorem3isfortheringgraph.Theorem2:Considerasystemofnagentswithkinematics(5).GivenacompleteconnectivitygraphGandapplyingcontrollaw(6),then-agentsystem(almost)globallyasymptoticallyconvergestoabalancedcircularformation,whichisdefinedinDefinition3.Proof:See28fortheproof.squaresolidThereasonfor“almostglobal”stabilityofthesetofbal-ancedstatesisthatthereisameasure-zerosetofstateswheretheequilibriumisunstable.Thissetischaracterizedbythoseconfigurationsthatmagentsareatantipodalpositionfromtheothernmagents,where1mn/2.Next,weconsiderthesituationthattheconnectivitygraphhasaringtopologyGring.Theorem3:Considerasystemofnagentswithkinematics(5).SupposetheconnectivitygraphhastheringtopologyGringandthateachag
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030布藝行業(yè)市場(chǎng)深度調(diào)研及發(fā)展趨勢(shì)與發(fā)展趨勢(shì)分析與未來(lái)投資戰(zhàn)略咨詢研究報(bào)告
- 改初一學(xué)霸的數(shù)學(xué)試卷
- 阜陽(yáng)2024高三聯(lián)考數(shù)學(xué)試卷
- 高一聯(lián)考數(shù)學(xué)試卷
- 豐南區(qū)期末考試數(shù)學(xué)試卷
- 知識(shí)產(chǎn)權(quán)戰(zhàn)略在健身器材行業(yè)中的法律風(fēng)險(xiǎn)防范措施考核試卷
- 恩施州期末聯(lián)考數(shù)學(xué)試卷
- 贛州市一模理科數(shù)學(xué)試卷
- 印刷企業(yè)品牌形象塑造與傳播策略考核試卷
- 鳳凰教育小升初數(shù)學(xué)試卷
- 口腔解剖生理學(xué)-第八章(動(dòng)脈)
- 梅尼埃綜合征
- 國(guó)家開(kāi)放大學(xué)??啤斗ɡ韺W(xué)》期末紙質(zhì)考試第四大題名詞解釋題庫(kù)2025珍藏版
- 網(wǎng)絡(luò)安全攻防演練護(hù)網(wǎng)工作報(bào)告
- 商貿(mào)公司保障服務(wù)方案
- 形勢(shì)與政策臺(tái)灣政治生態(tài)分析
- 市場(chǎng)營(yíng)銷人員勞動(dòng)合同指南
- 2024年北京市西城區(qū)中考生物真題(含解析)
- 藥物色譜分離技術(shù)-凝膠色譜(制藥技術(shù)課件)
- DZ∕T 0033-2020 固體礦產(chǎn)地質(zhì)勘查報(bào)告編寫(xiě)規(guī)范(正式版)
- 《抽水蓄能電站豎井式泄洪洞設(shè)計(jì)導(dǎo)則》
評(píng)論
0/150
提交評(píng)論