




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、精選優(yōu)質(zhì)文檔-傾情為你奉上因式分解方法技巧專題一分解因式的常用方法:一提二套三分 ,即先考慮各項(xiàng)有無公因式可提;再考慮能否運(yùn)用公式來分解;最后檢查每個因式是否還可以繼續(xù)分解,以及分解的結(jié)果是否正確。常見錯誤:1、漏項(xiàng),特別是漏掉 2、變錯符號,特別是公因式有負(fù)號時,括號內(nèi)的符號沒變化 3、分解不徹底首項(xiàng)有負(fù)常提負(fù),各項(xiàng)有“公”先提“公”,某項(xiàng)提出莫漏1,括號里面分到“底”例題把下列各式因式分解:1. x(y-x)+y(y-x)-(x-y)2 2. a5-a3. 3(x2-4x)2-48點(diǎn)撥看出其中所含的公式是關(guān)鍵練習(xí)1、 2、3、 4、56x3yz+14x2y2z21xy2z25、4a316a
2、2b26ab2 6、專題二二項(xiàng)式的因式分解:二項(xiàng)式若能分解,就一定要用到兩種方法:1提公因式法 2平方差公式法。先觀察二項(xiàng)式的兩項(xiàng)是否有公因式,然后再構(gòu)造平方差公式,運(yùn)用平方差公式a2-b2=(a+b)(a-b)時,關(guān)鍵是正確確定公式中a,b所代表的整式,將一個數(shù)或者一個整式化成整式,然后通過符號的轉(zhuǎn)換找到負(fù)號,構(gòu)成平方差公式,記住要分解徹底。平方差公式運(yùn)用時注意點(diǎn):根據(jù)平方差公式的特點(diǎn):當(dāng)一個多項(xiàng)式滿足下列條件時便可用平方差公式分解因式:A、 多項(xiàng)式為二項(xiàng)式或可以轉(zhuǎn)化成二項(xiàng)式;B、 兩項(xiàng)的符號相反;C、 每一項(xiàng)的絕對值均可以化為某個數(shù)的平方,及多項(xiàng)式可以轉(zhuǎn)化成平方差的形式;D、 首項(xiàng)系數(shù)是負(fù)
3、數(shù)的二項(xiàng)式,先交換兩項(xiàng)的位置,再用平方差公式;E、 對于分解后的每個因式若還能分解應(yīng)該繼續(xù)分解;如有公因式的先提取公因式例題分解因式:3(x+y)2-27點(diǎn)撥先提取公因式,在利用平方差公式分解因式,一次不能分解徹底的,應(yīng)繼續(xù)分解練習(xí)1)x5x3 2) 3)2516x2 4)9a2b2. 5)2516x2; 6)9a2b2.專題三三項(xiàng)式的分解因式:如果一個能分解因式,一般用到下面2種方法:1提公因式法 2完全平方公式法。先觀察三項(xiàng)式中是否含有公因式,然后再看三項(xiàng)式是否是完全平方式,即a2+2ab+b2或者a2-2ab+b2的形式完全平方公式運(yùn)用時注意點(diǎn):A. 多項(xiàng)式為三項(xiàng)多項(xiàng)式式;B. 其中有兩
4、項(xiàng)符號相同,且這兩項(xiàng)的絕對值均可以化為某兩數(shù)(或代數(shù)式)的平方;C. 第三項(xiàng)為B中這兩個數(shù)(或代數(shù)式)的積的2倍,或積的2倍的相反數(shù)?!纠}】將下列各式因式分解:1)ax2-2axy+ay2 2)x4-6x2+9練習(xí)1)25x20xy4y2 2)x4x4x 3) 4) 5) 專題四多項(xiàng)式因式分解的一般步驟: 如果多項(xiàng)式的各項(xiàng)有公因式,那么先提公因式; 如果各項(xiàng)沒有公因式,那么可嘗試運(yùn)用公式、十字相乘法來分解; 如果用上述方法不能分解,那么可以嘗試用分組、拆項(xiàng)、補(bǔ)項(xiàng)法來分解; 分解因式,必須進(jìn)行到每一個多項(xiàng)式因式都不能再分解為止。 分組分解法
5、60; 要把多項(xiàng)式am+an+bm+bn分解因式,可以先把它前兩項(xiàng)分成一組,并提出公因式a,把它后兩項(xiàng)分成一組,并提出公因式b,從而得到a(m+n)+b(m+n),又可以提出公因式m+n,從而得到(a+b)(m+n) 例題分解因式m2 +5n-mn-5m 1. 按公因式分組: . 2. 按系數(shù)特點(diǎn)分組: 3. 按字母次數(shù)特點(diǎn)分組: 4. 按公式特點(diǎn)分組: 十字相乘法(一)二次項(xiàng)系數(shù)為1的二次三項(xiàng)式例1、分解因式:例2、分解因式: (二)二次項(xiàng)系數(shù)不為1的二次三項(xiàng)式例3、分解因式:例4、分解因式: (三)二次項(xiàng)系數(shù)為1的齊次多項(xiàng)式例5、分解因式:例6、分解因式(四)二次項(xiàng)系數(shù)不為1的齊次多項(xiàng)式例7、 例8、 常用方法因式分解練習(xí):(1)4x(ab)(b2a2);(2)(a2b2)24a2b2;(3)x42
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030中國智能坐浴盆行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 2025至2030中國無線氣體檢測技術(shù)行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 2025至2030中國數(shù)控橋式鋸行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 2025至2030中國抽屜式洗碗機(jī)行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 2025至2030中國手動工具行業(yè)市場發(fā)展分析及競爭格局與投資價值評估報告
- 2025至2030中國建筑信息模型(BIM)提取軟件行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 2025至2030中國廢玻璃行業(yè)市場發(fā)展現(xiàn)狀及投資前景與戰(zhàn)略報告
- 商務(wù)會議服務(wù)及場地租賃合同書
- 誰動了我的奶酪讀后感450字(12篇)
- 愛心傳遞寫給老師的信抒情8篇
- Python數(shù)據(jù)科學(xué)與機(jī)器學(xué)習(xí)結(jié)合試題及答案
- 海鮮水產(chǎn)電商商業(yè)計劃書
- 托育轉(zhuǎn)讓合同協(xié)議書
- 2025江西中考:政治必背知識點(diǎn)
- 裝飾音在樂理考試中的應(yīng)用試題及答案
- 購犬協(xié)議書范本
- 通信汛期安全生產(chǎn)課件
- 物業(yè)工程服務(wù)意識培訓(xùn)
- 提高分級護(hù)理的巡視率
- 中國心力衰竭診斷和治療指南(2024)解讀
- 失重致血管細(xì)胞衰老和心臟代謝異常及干預(yù)策略的研究
評論
0/150
提交評論