八年級數(shù)學(xué)教學(xué)設(shè)計:提公因式法3_第1頁
八年級數(shù)學(xué)教學(xué)設(shè)計:提公因式法3_第2頁
八年級數(shù)學(xué)教學(xué)設(shè)計:提公因式法3_第3頁
八年級數(shù)學(xué)教學(xué)設(shè)計:提公因式法3_第4頁
八年級數(shù)學(xué)教學(xué)設(shè)計:提公因式法3_第5頁
免費(fèi)預(yù)覽已結(jié)束,剩余1頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、八年級數(shù)學(xué)教學(xué)設(shè)計:提公因式法3教學(xué)設(shè)計提公因式法(一)教學(xué)目標(biāo)1.使學(xué)生了解因式分解的意義 ,理解因式分解的概念及其與整式乘法的區(qū)別和聯(lián)系.2.使學(xué)生理解提公因式法并能熟練地運(yùn)用提公因式法分解因式.3.通過學(xué)生自行探求解題途徑 ,培養(yǎng)學(xué)生觀察、分析和創(chuàng)新能力 ,深化學(xué)生逆向思維能力.教學(xué)重點(diǎn)及難點(diǎn)教學(xué)重點(diǎn):因式分解的概念及提公因式法.教學(xué)難點(diǎn):正確找出多項(xiàng)式各項(xiàng)的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系.教學(xué)過程設(shè)計:一、復(fù)習(xí)提問乘法對加法的分配律.二、新課1.新課引入:用類比的方法引入課題.在學(xué)習(xí)分?jǐn)?shù)時 ,我們常常要進(jìn)行約分與通分 ,因此常常要把一個數(shù)分解因數(shù)(即分解約數(shù)).例如 ,把15分

2、解成3×5 ,把42分解成2×3×7.在第七章我們學(xué)習(xí)了整式的乘法 ,幾個整式相乘可以化成一個多項(xiàng)式 ,那么一個多項(xiàng)式如何化成幾個整式乘積的形式呢?這一章就是學(xué)習(xí)如何把一個多項(xiàng)式化成幾個整式的積的方法.2.因式分解的概念:請學(xué)生每人寫出一個單項(xiàng)式與多項(xiàng)式相乘、多項(xiàng)式與多項(xiàng)式相乘的例子 ,并計算出其結(jié)果.(老師按學(xué)生所說在黑板寫出幾個.)如:m(a+b+c)=ma+mb+mc2xy(x-2xy+1)=2x2y-4x2y2+2xy(a+b)(a-b)=a2-b2(a+b)(m+n)=am+an+bm+bn(x-5)(2-x)=-x2+7x-10 等等.再請學(xué)生觀察它們

3、有什么共同的特點(diǎn)?特點(diǎn):左邊 ,整式×整式;右邊 ,是多項(xiàng)式.可見 ,整式乘以整式結(jié)果是多項(xiàng)式 ,而多項(xiàng)式也可以變形為相應(yīng)的整式與整式的乘積 ,我們就把這種多項(xiàng)式的變形叫做因式分解.定義:把一個多項(xiàng)式化為幾個整式的積的形式 ,叫做把這個多項(xiàng)式因式分解 ,也叫做把這個多項(xiàng)式分解因式.如:因式分解:ma+mb+mc=m(a+b+c).整式乘法:m(a+b+c)=ma+mb+mc.讓學(xué)生說出因式分解與整式乘法的聯(lián)系與區(qū)別.聯(lián)系:同樣是由幾個相同的整式組成的等式.區(qū)別:這幾個相同的整式所在的位置不同 ,上式是因式分解;下式是整式乘法.兩者是方向相反的恒等變形 ,二者是一個式子的不同表現(xiàn)形式

4、,一個是多項(xiàng)式的表現(xiàn)形式 ,一個是兩個或幾個因式積的表現(xiàn)形式.例1 以下各式從左到右哪些是因式分解?(投影)(1)x2-x=x(x-1) ()(2)a(a-b)=a2-ab (×)(3)(a+3)(a-3)=a2-9 (×)(4)a2-2a+1=a(a-2)+1 (×)(5)x2-4x+4=(x-2)2 ()下面我們學(xué)習(xí)幾種常見的因式分解方法.3.提公因式法:我們看多項(xiàng)式:ma+mb+mc請學(xué)生指出它的特點(diǎn):各項(xiàng)都含有一個公共的因式m ,這時我們把因式m叫做這個多項(xiàng)式各項(xiàng)的公因式.注意:公因式是各項(xiàng)都含有的公共的因式.又如:a是多項(xiàng)式a2-a各項(xiàng)的公因式.ab是多

5、項(xiàng)式5a2b-ab2各項(xiàng)的公因式.2mn是多項(xiàng)式4m2np-2mn2q各項(xiàng)的公因式.根據(jù)乘法的分配律 ,可得m(a+b+c)=ma+mb+mc ,逆變形 ,便得到多項(xiàng)式ma+mb+mc的因式分解形式ma+mb+mc=m(a+b+c).這說明 ,多項(xiàng)式ma+mb+mc各項(xiàng)都含有的公因式可以提到括號外面 ,將多項(xiàng)式ma+mb+mc寫成m(a+b+c)的形式 ,這種分解因式的方法叫做提公因式法.定義:一般地 ,如果多項(xiàng)式的各項(xiàng)有公因式 ,可以把這個公因式提到括號外面 ,將多項(xiàng)式寫成因式乘積的形式 ,這種分解因式的方法叫做提公因式法.顯然 ,由定義可知 ,提公因式法的關(guān)鍵是如何正確地尋找公因式.讓學(xué)生

6、觀察上面的公因式的特點(diǎn) ,找出確定公因式的萬法:(1)公因式的系數(shù)應(yīng)取各項(xiàng)系數(shù)的最大公約數(shù):(2)字母取各項(xiàng)的相同字母 ,而且各字母的指數(shù)取次數(shù)例2 指出以下各多項(xiàng)式中各項(xiàng)的公因式:(1)ax+ay+a (a)(2)3mx-6mx2 (3mx)(3)4a2+10ah (2a)(4)x2y+xy2 (xy)(5)12xyz-9x2y2 (3xy)例3 把8a3b2-12ab3c分解因式.分析:分兩步:第一步 ,找出公因式;第二步 ,提公因式.先引導(dǎo)學(xué)生按確定公因式的方法找出多項(xiàng)式的公因式4ab2.解:8a3b2-12ab3c=4ab2·2a2-4ab2·3bc=4ab2(2a

7、2-3bc).說明:(1)應(yīng)特別強(qiáng)調(diào)確定公因式的兩個條件以免漏取.(2)開始講提公因式法時 ,最好把公因式單獨(dú)寫出.以顯提醒;強(qiáng)調(diào)提公因式;強(qiáng)調(diào)因式分解.例4 把3x2-6xy+x 分解因式.分析:先引導(dǎo)學(xué)生找出公因式x ,強(qiáng)調(diào)多項(xiàng)式中x=x·1.解:3x2-6xy+x=x·3x-x·6y+x·1=x(3x-6y+1).說明:當(dāng)多項(xiàng)式的某一項(xiàng)恰好是公因式時 ,這項(xiàng)應(yīng)看成它與1的乘積 ,提公因式后剩下的應(yīng)是1 ,1作為項(xiàng)的系數(shù)通??梢允÷?,但如果單獨(dú)成一項(xiàng)時 ,它在因式分解時不能漏掉 ,這類題常常有些學(xué)生犯下面的錯誤 ,3x2-6xy+x=x(3x-6y

8、) ,這一點(diǎn)可讓學(xué)生利用恒等變形分析錯誤原因.還應(yīng)提醒學(xué)生注意:提公因式后的因式的項(xiàng)數(shù)應(yīng)與原多項(xiàng)式的項(xiàng)數(shù)一樣 ,這樣可以檢查是否漏項(xiàng).課堂練習(xí):(投影)把以下各式分解因式:(l)2R+2r;(3)3x3+6x2;(4)21a2+7a;(5)15a2+25ab2;(6)x2y+xy2-xy.例5 把-4m3+16m2-26m分解因式.分析:此多項(xiàng)式第一項(xiàng)的系數(shù)是負(fù)數(shù) ,與前面兩例不同 ,應(yīng)先把它轉(zhuǎn)化為前面的情形便可以因式分解了 ,所以應(yīng)先提負(fù)號轉(zhuǎn)化 ,然后再提公因式 ,提"-"號時 ,注意添括號法那么.解:-4m3+16m2-26m=-(4m3-16m2+26m)=-2m(2

9、m2-8m+13).說明:通過此例可以看出應(yīng)用提公因式法分解因式時 ,應(yīng)先觀察第一項(xiàng)系數(shù)的正負(fù) ,負(fù)號時 ,運(yùn)用添括號法那么提出負(fù)號 ,此時一定要把每一項(xiàng)都變號;然后再提公因式.課堂練習(xí):(投影)把以下各式分解因式:(1)-15ax-20a;(2)-25x8+125x16;(3)-a3b2+a2b3;(4)-x3y3-x2y2-xy;(5)-3ma3+6ma2-12ma;(三)小結(jié)1.因式分解的意義及其概念.2.因式分解與整式乘法的聯(lián)系與區(qū)別.3.公因式及提公因式法.4.提公因式法因式分解中應(yīng)注意的問題.要練說 ,得練聽。聽是說的前提 ,聽得準(zhǔn)確 ,才有條件正確模仿 ,才能不斷地掌握高一級水平

10、的語言。我在教學(xué)中 ,注意聽說結(jié)合 ,訓(xùn)練幼兒聽的能力 ,課堂上 ,我特別重視教師的語言 ,我對幼兒說話 ,注意聲音清楚 ,上下起伏 ,抑揚(yáng)有致 ,富有吸引力 ,這樣能引起幼兒的注意。當(dāng)我發(fā)現(xiàn)有的幼兒不專心聽別人發(fā)言時 ,就隨時表揚(yáng)那些靜聽的幼兒 ,或是讓他重復(fù)別人說過的內(nèi)容 ,抓住教育時機(jī) ,要求他們專心聽 ,用心記。平時我還通過各種趣味活動 ,培養(yǎng)幼兒邊聽邊記 ,邊聽邊想 ,邊聽邊說的能力 ,如聽詞對詞 ,聽詞句說意思 ,聽句子辯正誤 ,聽故事講述故事 ,聽謎語猜謎底 ,聽智力故事 ,動腦筋 ,出主意 ,聽兒歌上句 ,接兒歌下句等 ,這樣幼兒學(xué)得生動活潑 ,輕松愉快 ,既訓(xùn)練了聽的能力 ,

11、強(qiáng)化了記憶 ,又開展了思維 ,為說打下了根底。這個工作可讓學(xué)生分組負(fù)責(zé)收集整理,登在小黑板上,每周一換。要求學(xué)生抽空抄錄并且閱讀成誦。其目的在于擴(kuò)大學(xué)生的知識面,引導(dǎo)學(xué)生關(guān)注社會,熱愛生活,所以內(nèi)容要盡量廣泛一些,可以分為人生、價值、理想、學(xué)習(xí)、成長、責(zé)任、友誼、愛心、探索、環(huán)保等多方面。如此下去,除假期外,一年便可以積累40多那么材料。如果學(xué)生的腦海里有了眾多的鮮活生動的材料,寫起文章來還用亂翻參考書嗎?六、作業(yè)教材 P.10中 1、2、3、4.七、板書設(shè)計“教書先生恐怕是市井百姓最為熟悉的一種稱呼 ,從最初的門館、私塾到晚清的學(xué)堂 ,“教書先生那一行當(dāng)怎么說也算是讓國人景仰甚或敬畏的一種社會職業(yè)。只是更早的“先生概念并非源于教書 ,最初出現(xiàn)的“先生一詞也并非有傳授知識那般的含義。?孟子?中的“先生何為出此言也?;?論語?中的“有酒食 ,先生饌;?國策?中的“先生坐 ,何至于此?等等 ,均指“先生為父兄或有學(xué)問、有

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論