




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、博士學(xué)位論文直接式原生污水源熱泵系統(tǒng)的防堵技術(shù)及換熱特性研究CLOG-PROOF TECHNIQUE AND HEATEXCHANGE CHARACTERISTIC RESEARCHOF THE DIRECT UNTREATED SEWAGESOURCE HEAT PUMP SYSTEM莊兆意哈爾濱工業(yè)大學(xué)2012年7月國(guó)內(nèi)圖書分類號(hào):X703.3 學(xué)校代碼:10213 國(guó)際圖書分類號(hào):628.2 密級(jí):公開工學(xué)博士學(xué)位論文直接式原生污水源熱泵系統(tǒng)的防堵技術(shù)及換熱特性研究博 士 研究生:莊兆意導(dǎo) 師:孫德興 教授申 請(qǐng) 學(xué) 位:工學(xué)博士學(xué) 科、專 業(yè):供熱、供燃?xì)?、通風(fēng)及空調(diào)工程 所 在 單
2、位:市政環(huán)境工程學(xué)院答 辯 日 期:2012年7月授予學(xué)位單位:哈爾濱工業(yè)大學(xué)Classified Index:X703.3Dissertation for the Doctoral Degree in EngineeringCLOG-PROOF TECHNIQUE AND HEATEXCHANGE CHARACTERISTIC RESEARCHOF THE DIRECT UNTREATED SEWAGESOURCE HEAT PUMP SYSTEMCandidate :Zhuang Zhaoyi Supervisor : Prof. Sun DexingAcademic Degree App
3、lied for :Doctor of Engineering Specialty : Heating, Gas Supplying, Ventilation& Air-conditioning EngineeringAffiliation : School of Municipal andEnvironmental EngineeringDate of Defence:July,2012 Degree-Conferring-Institution :Harbin Institute of Technology摘 要摘 要城市污水中蘊(yùn)含有豐富的低位熱能,將其作為熱泵的冷熱源為建筑供熱空
4、調(diào)具有巨大的開發(fā)利用價(jià)值。城市污水的水質(zhì)極為惡劣。其熱工與流動(dòng)性能與清水有很大不同。污水處理廠中的二級(jí)出水(排放水)接近清水的水質(zhì),但由于污水處理廠多位于遠(yuǎn)離城市建筑群的郊區(qū),因此真正具有巨大開發(fā)利用價(jià)值的是遍布城區(qū)污水渠中的原生污水。傳統(tǒng)的熱泵空調(diào)機(jī)組對(duì)水質(zhì)有嚴(yán)格的要求。因此目前在利用原生污水的熱泵系統(tǒng)中多為避免污水直接進(jìn)熱泵系統(tǒng)的蒸發(fā)器或冷凝器而設(shè)置一個(gè)中間換熱的措施,即所謂“間接式系統(tǒng)”,這種間接式系統(tǒng)不僅要增加中間換熱設(shè)備而且要增加系統(tǒng)的火用損失,故開發(fā)污水直接進(jìn)機(jī)組的熱泵系統(tǒng),即所謂“直接式系統(tǒng)”,從污水源熱泵技術(shù)產(chǎn)生以來(lái)就對(duì)學(xué)術(shù)與工程界具有巨大的誘惑力。直接式污水源熱泵系統(tǒng)由于污水
5、水質(zhì)的特殊性,必須解決以下關(guān)鍵問(wèn)題:(1)對(duì)過(guò)濾和防阻塞的效率和可靠性提出了更高的要求;(2)必須認(rèn)清污水的流動(dòng)、換熱以及污垢熱阻的特性與規(guī)律;(3)必須認(rèn)清污水蒸發(fā)器、冷凝器的換熱特性;(4)直接式熱泵系統(tǒng)兩換熱器的合理匹配與性能。本文對(duì)此主要進(jìn)行了下述研究工作:直接式污水源熱泵系統(tǒng)能夠長(zhǎng)時(shí)間連續(xù)安全換熱,首要前提是必須保證大尺度污物不進(jìn)入機(jī)組的換熱器中。針對(duì)已在間接式污水源熱泵系統(tǒng)中普遍應(yīng)用的污水防阻設(shè)備,通過(guò)工程實(shí)踐和測(cè)試,總結(jié)發(fā)現(xiàn):(1)絲狀纖維類污物是阻塞濾面的最大誘因;(2)參考傳統(tǒng)做法,僅靠過(guò)濾孔直徑難以衡量防阻機(jī)濾面的過(guò)濾與再生能力;(3)不可避免的存在內(nèi)漏混水的情況。論文建立
6、了以纏繞長(zhǎng)度、反沖效率、內(nèi)漏率、換熱保證率為核心的,包括濾孔直徑、反沖面積比、轉(zhuǎn)速、阻力等在內(nèi)的防阻機(jī)設(shè)計(jì)指標(biāo)體系,并通過(guò)工程測(cè)試確定了最佳的纏繞長(zhǎng)度、反沖面積比和清潔周期,為防阻的科學(xué)合理設(shè)計(jì)及工程選用提供了合理依據(jù)。設(shè)計(jì)并在哈爾濱太平污水處理廠搭建了城市原生污水性能研究實(shí)驗(yàn)臺(tái),實(shí)驗(yàn)研究了城市原生污水在各種管材圓管內(nèi)紊流流動(dòng)時(shí)的污垢熱阻特性,流動(dòng)阻力特性及對(duì)流換熱特性。通過(guò)大量實(shí)驗(yàn)數(shù)據(jù)總結(jié)出各種常用換熱管內(nèi)污垢熱阻增長(zhǎng)規(guī)律,以及污垢熱阻穩(wěn)定值與管內(nèi)污水流速的函數(shù)關(guān)系、污水紊流流動(dòng)的阻力系數(shù)計(jì)算式及換熱準(zhǔn)則關(guān)聯(lián)式。實(shí)驗(yàn)表明污垢增長(zhǎng)模型為時(shí)間的漸進(jìn)型函哈爾濱工業(yè)大學(xué)工學(xué)博士學(xué)位論文數(shù),在同管徑同
7、流速下污水的流動(dòng)阻力系數(shù)約為清水的1.081.12倍,對(duì)流換熱系數(shù)約為清水的0.750.82倍。這些基礎(chǔ)數(shù)據(jù)與經(jīng)驗(yàn)公式為污水源熱泵系統(tǒng)的換熱設(shè)備研發(fā)、系統(tǒng)設(shè)計(jì)等提供了較為可靠的依據(jù)。依據(jù)污水流動(dòng)、換熱及污垢熱阻特性、換熱管污水側(cè)難以強(qiáng)化換熱的特點(diǎn),建立了污水蒸發(fā)器與冷凝器的分布參數(shù)模型,編制了仿真程序并進(jìn)行了大量的數(shù)值研究,給出了污水蒸發(fā)器和冷凝器的傳熱系數(shù)范圍,以及污水溫度和流量變化對(duì)換熱器換熱特性的影響規(guī)律。發(fā)現(xiàn)與常規(guī)水源熱泵的兩換熱器相比,污水蒸發(fā)器與冷凝器內(nèi)污水以四流程為宜,冷凝器內(nèi)蒸汽過(guò)熱段所占比例較大,過(guò)熱對(duì)冷凝換熱影響明顯,為系統(tǒng)換熱器設(shè)計(jì)以及系統(tǒng)性能分析打下基礎(chǔ)。通過(guò)直接式污水
8、源熱泵系統(tǒng)建模與數(shù)值仿真,給出了直接式系統(tǒng)的效能范圍,以及污水溫度對(duì)效能的影響規(guī)律。規(guī)定了污水源熱泵機(jī)組的標(biāo)準(zhǔn)設(shè)計(jì)工況,并深入分析了污水蒸發(fā)器、冷凝器面積匹配比與機(jī)組制熱量、制冷量、出力比之間的關(guān)系。由于污水源熱泵機(jī)組具有更大的適宜面積比范圍和出力比范圍,提出不同地區(qū)采取不同面積比進(jìn)行熱泵機(jī)組設(shè)計(jì)的理念。最后給出了非標(biāo)準(zhǔn)工況下熱泵機(jī)組的特性以及設(shè)計(jì)與選型原則。本文通過(guò)研究主要解決了直接式污水源熱泵系統(tǒng)所面臨的防堵塞可靠性、污水流動(dòng)與換熱計(jì)算方法、污水蒸發(fā)器與冷凝器的換熱特性、機(jī)組換熱器匹配等問(wèn)題,為直接式污水源熱泵技術(shù)的發(fā)展奠定了一定的理論基礎(chǔ)。關(guān)鍵詞:原生污水;直接式系統(tǒng);熱泵;防堵塞性能;
9、匹配AbstractAbstractMunicipal sewage contains so abundant low level heat that it will mean a huge value for development and utilization when used as a cold and heat source of heat pumps for heating and air-conditioning system of buildings.The water quality of municipal sewage is extremely poor and the
10、 thermal and flow properties of it are quite different from those of clear water. In contrast, the water quality of secondary effluent from sewage treatment plants (discharge water is close to that of clear water. However, sewage treatment plants are mostly located in suburbs far away from the city
11、buildings, so it is exactly untreated sewage all over the city sewers that will mean the huge value for development and utilization.Traditional heat pump air conditioning units have strict requirements on water quality. Therefore, measures of intermediate heat-transfer are often taken in the present
12、 heat pump system based on untreated wastewater to avoid sewage flowing directly into the evaporator or condenser of the system which is the so-called "indirect system" and not only introduces extra intermediate heat-transfer devices but also increases system energy loss. So the developmen
13、t of heat pump system namely the so-called "direct system" allowing sewage to enter the units directly shows a great allure on the academic and engineering fields from the origin of the technology of sewage-source heat pumps.Considering the specialty of the water quality of sewage, direct
14、sewage-source heat pump system must solve the following key problems. Firstly, higher requirement is needed for efficiency and reliability of filtering and anti-blocking. Secondly, the feature and discipline of flow, heat-transfer and fouling heat resistance of sewage must be recognized. Thirdly, th
15、e heat-transfer performance of sewage evaporator and condenser should be recognized as well. At last, reasonable match and performance of the two machines of direct heat system need to be taken into consideration. This paper mainly introduces the research work on the mentioned techniques as follows.
16、The primary precondition of safe and enduring heat-transfer for direct sewage source heat pump set is to guarantee that large-scale contaminant of all shapes cannot enter the heat exchanger of the set. Corresponding to the universally哈爾濱工業(yè)大學(xué)工學(xué)博士學(xué)位論文employed sewage clog-proof machine in indirect sewa
17、ge source heat pump systems, we have performed engineering practice and test, according to which we make following conclusions. Firstly, filamentous contaminant is the main incentive of blocking filter surface. Secondly, referring to the traditional method, it is tough to measure the filtration and
18、regeneration ability of the clog-proof machines filter surface only with the diameter of filter hole given. Thirdly, the condition of internal leakage mixing water exists inevitably. The paper establishes a design index system of clog-proof machine including filter pore diameter, recoil area ratio,
19、rotating speed, resistance and so on, and winding length, recoil efficiency, internal leakage rate and heat-transfer guaranteed rate are the core of the index system. The paper also defines the optimal filter pore size, recoil square ratio and cleaning period of the clog-proof device by engineering
20、tests, all three of which provide reasonable foundation for scientific and rational design of clog-proof device for engineering application.An experiment table focusing on city untreated sewage properties research has been designed and constructed in Harbin Taiping sewage treatment plant as to be me
21、ntioned in the paper. Experiments have been executed on the fouling heat resistance performance, flow resistance characteristics and flow and heat-transfer characteristics of urban untreated sewage turbulent flow in a variety of pipes. Through considerable experimental statistics, we can reach such
22、conclusions as fouling heat resistance growth disciplines for kinds of common heat-transfer pipes, the function between the stable value of fouling thermal resistance and the sewage flow rate in the pipe, an expression for resistance coefficient of sewage turbulent flow and finally a heat transfer c
23、orrelation formula. The experiment results demonstrate fouling growth model as a progressive function of time. Specifically, experiments verify that with same pipe diameter and flow rate, the flow resistance coefficient of wastewater is approximately 1.081.12 times that of clear water, whereas the c
24、onvective heat transfer coefficient is about 7582 percent of that of clear water. These fundamental statistics and empirical formulas provide more reliable basis for heat-transfer device development and system design of sewage source heat pump systems.Based on the sewage flow, heat transfer and foul
25、ing resistance properties and the characteristic of difficulty in heat transfer enhancement at the sewage side of heat transfer tube, a distributed parameter model of the sewage evaporator andAbstractcondenser is established, and simulation programs have been developed and employed to do amounts of
26、numerical study which obtains the scope of sewage evaporator and condenser heat transfer coefficients and the law of influence exerted by sewage temperature and flow changes on their heat transfer properties. It is also found that compared with the two machines of the conventional heat pump, the sew
27、age evaporator and condenser have following prominent characteristics. Four processes are appropriate for wastewater inside the machines, and steam superheating segment in condenser takes up a great proportion. In addition, the impact of superheating on condensation heat transfer is significant. All
28、 the achievements lay the foundation for system evaporator and condenser design and system performance analysis.Through direct sewage source heat pump system modeling and numerical simulation, the efficiency range of direct system and the law of sewage temperatures influence on performance are given
29、. Then we set the standard designed working condition of sewage source heat pump units and do deep analysis on the relationship between the matching ratio of sewage evaporator and condenser area and heat output, cooling capacity and power output of the units. For the greater range of suitable area r
30、adio and power output radio of sewage source heat pump unit, we put forward the concept that different area ratio will be adopted while designing heat pump units in different regions. Finally the characteristics of heat pump units and principles for design and selection are introduced under non-stan
31、dard working conditions.By researching, this paper has mainly solved problems faced by direct sewage source heat pump system such as the clog-proof reliability, sewage flow and heat transfer calculation method, heat transfer properties of sewage evaporator and condenser and the matching of the two d
32、evices, all of which lay theoretical foundation for the development of direct sewage source heat pump system.Keywords : untreated sewage, direct system, heat pump, clog-proof, matching哈爾濱工業(yè)大學(xué)工學(xué)博士學(xué)位論文符號(hào)表A 面積 e t 蒸發(fā)溫度 f C掛壁系數(shù)c t 冷凝溫度 COP 性能系數(shù)T 熱力學(xué)溫度 c換熱管單元面積造價(jià) U 熱流密度 p c定壓比熱 u 管內(nèi)流速 d 管段直徑 m u 斷面平均流速 D
33、圓筒直徑 f u網(wǎng)孔濾速 E相對(duì)誤差 V 流量EER 能效比 th V 壓縮機(jī)理論排氣量 F 面積z 高差 f 沿程阻力系數(shù) 希臘字母G 質(zhì)量流速 負(fù)荷比 H水泵揚(yáng)程 v 比容h對(duì)流換熱系數(shù) 機(jī)組出力比f(wàn) h 沿程阻力損失 氣相空隙率 g重力加速度 z 管束修正系數(shù) k 工質(zhì)絕熱指數(shù) f 強(qiáng)化管修正系數(shù) s k 管壁絕對(duì)粗糙度 導(dǎo)熱系數(shù) K 總傳熱系數(shù) 動(dòng)力粘度 L長(zhǎng)度 制熱制冷量 M液體的分子量 局部阻力系數(shù) m 質(zhì)量流量 網(wǎng)孔堵塞厚度 N功率 掛壁概率 Nu努謝爾特?cái)?shù) * 時(shí)間常數(shù), NTU 傳熱單元數(shù) 液體的密度 n 流動(dòng)系數(shù) 稠度系數(shù)P 壓力 濾網(wǎng)的拉應(yīng)力 Pr Prantl 數(shù) 運(yùn)動(dòng)
34、粘度 P 壓差 面積比Q換熱量 工程設(shè)計(jì)負(fù)荷 ij Q 單元內(nèi)熱負(fù)荷 下角標(biāo)f Q過(guò)水流量 f 污垢?jìng)?cè) w Q 電加熱功率 c 清潔側(cè) f R污垢熱阻 p 污染狀態(tài) *f R污垢漸近熱阻值h制熱符號(hào)表Re Reynolds 數(shù) L 冷流體;損失 r 管半徑 s 夏季;殼程 S 孔板面積比 t 管程 w S 反沖區(qū)的局部阻抗 1 入口 f S 過(guò)濾區(qū)的局部阻抗 2 出口 HE S 換熱器及管路的阻抗 in 進(jìn)口 m t 平均對(duì)數(shù)溫差out 出口 ' t 管壁與污水進(jìn)口處溫差 w 冬季 '' t 管壁與污水出口處溫差 r 制冷劑 , s i t污水進(jìn)口溫度 d 標(biāo)況下 ,
35、s o t 污水出口溫度e 蒸發(fā) , w i t 污水進(jìn)口處管外壁溫度 c 冷凝 , w o t污水出口處管外壁溫度q清水哈爾濱工業(yè)大學(xué)工學(xué)博士學(xué)位論文目 錄摘 要. I Abstract. III 符號(hào)表. VI第1章 緒 論.11.1 課題背景及研究意義.11.2 國(guó)內(nèi)外研究現(xiàn)狀及分析.61.3 本文的主要研究?jī)?nèi)容.19第2章 直接式污水源熱泵系統(tǒng)的防堵技術(shù)研究.212.1 引言.212.2 污水防阻機(jī)的過(guò)濾與再生數(shù)學(xué)模型.212.3 污水防阻機(jī)工程實(shí)踐問(wèn)題總結(jié)與分析.252.4 濾孔纏繞長(zhǎng)度及其對(duì)反沖效率的影響.292.5 防阻機(jī)混水特性及對(duì)換熱的影響.312.6 濾面設(shè)計(jì)與評(píng)價(jià)指標(biāo).3
36、92.7 防阻機(jī)與換熱器的清理維護(hù)措施.412.8 本章小結(jié).42第3章 城市原生污水流動(dòng)與換熱特性實(shí)驗(yàn).44目 錄3.1 引言.443.2 實(shí)驗(yàn)原理與方法.443.3 實(shí)驗(yàn)平臺(tái)設(shè)計(jì)與實(shí)驗(yàn)方案.473.4 實(shí)驗(yàn)測(cè)試的參數(shù)及方法.503.5 實(shí)驗(yàn)結(jié)果與分析.533.6 實(shí)驗(yàn)系統(tǒng)誤差分析.633.7 本章小結(jié).68第4章 直接式污水源熱泵系統(tǒng)換熱器的換熱特性.704.1 引言.704.2 直接式污水源熱泵系統(tǒng)換熱器整體設(shè)計(jì).704.3 直接式污水源熱泵系統(tǒng)換熱器的仿真模型.814.4 換熱器在非設(shè)計(jì)工況下的換熱特性.884.5 本章小結(jié).100第5章 直接式污水源熱泵系統(tǒng)性能與兩換熱器匹配.101
37、5.1 引言.1015.2 直接式污水源熱泵系統(tǒng)的仿真模型.101哈爾濱工業(yè)大學(xué)工學(xué)博士學(xué)位論文5.3 直接式污水源熱泵系統(tǒng)性能的仿真結(jié)果.1095.4 直接式污水源熱泵系統(tǒng)兩換熱器的匹配特性. 1125.5 非標(biāo)況下兩換熱器匹配與系統(tǒng)性能. 1185.6 本章小結(jié).120 結(jié) 論.122 參考文獻(xiàn).124 附錄.134 攻讀學(xué)位期間發(fā)表的學(xué)術(shù)論文及其他成果.138 哈爾濱工業(yè)大學(xué)博士學(xué)位論文原創(chuàng)性聲明.141 哈爾濱工業(yè)大學(xué)博士學(xué)位論文使用授權(quán)書.141 致 謝.142 個(gè)人簡(jiǎn)歷.144ContentsContentsAbstract (In Chinese . Abstract (In E
38、nglish. XINomenclature. XIChapter 1 Introduction. 11.1 Significance and objective.11.2 Literature review and analysis abroad and domestic.61.3 Source and content of this study.19Chapter 2 Clog-proof technique research of direct sewage heat-pump system. 212.1 Introduction. 212.2 Mathematical model of filter and recovery for sewage clog-proof machine.212.3 Summary and analysis engineering practical problem.252.4 Winding length and recoil area ratio.292.5 Effect on heat transfer and characteristics of water mixture.312.6 Design indices of filter area structure.392.7 Meas
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 新能源汽車電控工程師崗位面試問(wèn)題及答案
- 2025屆重慶市主城四區(qū)高一下化學(xué)期末復(fù)習(xí)檢測(cè)試題含解析
- 廣西玉林、柳州市2025年高一下化學(xué)期末聯(lián)考模擬試題含解析
- 廣東省深圳市南山區(qū)南頭中學(xué)2025屆高二下化學(xué)期末預(yù)測(cè)試題含解析
- 江蘇省南京梅山高級(jí)中學(xué)2025年化學(xué)高二下期末檢測(cè)試題含解析
- 2025屆湖北省鄂東南五校一體聯(lián)盟聯(lián)考高二下化學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析
- 縣區(qū)培訓(xùn)材料管理辦法
- 跨境旅游品牌策略-洞察及研究
- 村級(jí)畜牧獸醫(yī)管理辦法
- 廈門采購(gòu)方式管理辦法
- 外賣配送人員勞動(dòng)合同
- 《義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(2022年版)》初中內(nèi)容解讀
- 精神疾病患者的麻醉管理
- 高一物理競(jìng)賽試題及答案
- 醫(yī)院預(yù)約平臺(tái)建設(shè)方案
- 生命體征課件教學(xué)課件
- 2024年全國(guó)環(huán)保產(chǎn)業(yè)職業(yè)技能競(jìng)賽(工業(yè)廢水處理工)考試題庫(kù)(含答案)
- 《烏魯木齊市國(guó)土空間總體規(guī)劃(2021-2035年)》
- HJ 651-2013 礦山生態(tài)環(huán)境保護(hù)與恢復(fù)治理技術(shù)規(guī)范(試行)
- SY-T 5333-2023 鉆井工程設(shè)計(jì)規(guī)范
- 冠脈介入進(jìn)修匯報(bào)
評(píng)論
0/150
提交評(píng)論