




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2.1 一元二次方程2.1.1根的判別式我們知道,對(duì)于一元二次方程ax2bxc0(a0),用配方法可以將其變形為 因?yàn)閍0,所以,4a20于是(1)當(dāng)b24ac0時(shí),方程的右端是一個(gè)正數(shù),因此,原方程有兩個(gè)不相等的實(shí)數(shù)根 x1,2;(2)當(dāng)b24ac0時(shí),方程的右端為零,因此,原方程有兩個(gè)等的實(shí)數(shù)根 x1x2;(3)當(dāng)b24ac0時(shí),方程的右端是一個(gè)負(fù)數(shù),而方程的左邊一定大于或等于零,因此,原方程沒有實(shí)數(shù)根由此可知,一元二次方程ax2bxc0(a0)的根的情況可以由b24ac來判定,我們把b24ac叫做一元二次方程ax2bxc0(a0)的根的判別式,通常用符號(hào)“”來表示綜上所述,對(duì)于一元二次方
2、程ax2bxc0(a0),有(1) 當(dāng)0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根 x1,2;(2)當(dāng)0時(shí),方程有兩個(gè)相等的實(shí)數(shù)根 x1x2;(3)當(dāng)0時(shí),方程沒有實(shí)數(shù)根例1 判定下列關(guān)于x的方程的根的情況(其中a為常數(shù)),如果方程有實(shí)數(shù)根,寫出方程的實(shí)數(shù)根(1)x23x30; (2)x2ax10; (3) x2ax(a1)0; (4)x22xa0解:(1)324×1×330,方程沒有實(shí)數(shù)根(2)該方程的根的判別式a24×1×(1)a240,所以方程一定有兩個(gè)不等的實(shí)數(shù)根, (3)由于該方程的根的判別式為a24×1×(a1)a24a4(a2)2,所
3、以,當(dāng)a2時(shí),0,所以方程有兩個(gè)相等的實(shí)數(shù)根 x1x21;當(dāng)a2時(shí),0, 所以方程有兩個(gè)不相等的實(shí)數(shù)根 x11,x2a1(3)由于該方程的根的判別式為224×1×a44a4(1a),所以當(dāng)0,即4(1a) 0,即a1時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根 , ; 當(dāng)0,即a1時(shí),方程有兩個(gè)相等的實(shí)數(shù)根 x1x21; 當(dāng)0,即a1時(shí),方程沒有實(shí)數(shù)根說明:在第3,4小題中,方程的根的判別式的符號(hào)隨著a的取值的變化而變化,于是,在解題過程中,需要對(duì)a的取值情況進(jìn)行討論,這一方法叫做分類討論分類討論這一思想方法是高中數(shù)學(xué)中一個(gè)非常重要的方法,在今后的解題中會(huì)經(jīng)常地運(yùn)用這一方法來解決問題2.1
4、.2 根與系數(shù)的關(guān)系(韋達(dá)定理) 若一元二次方程ax2bxc0(a0)有兩個(gè)實(shí)數(shù)根 ,則有 ; 所以,一元二次方程的根與系數(shù)之間存在下列關(guān)系: 如果ax2bxc0(a0)的兩根分別是x1,x2,那么x1x2,x1·x2這一關(guān)系也被稱為韋達(dá)定理特別地,對(duì)于二次項(xiàng)系數(shù)為1的一元二次方程x2pxq0,若x1,x2是其兩根,由韋達(dá)定理可知 x1x2p,x1·x2q,即 p(x1x2),qx1·x2,所以,方程x2pxq0可化為 x2(x1x2)xx1·x20,由于x1,x2是一元二次方程x2pxq0的兩根,所以,x1,x2也是一元二次方程x2(x1x2)xx1&
5、#183;x20因此有以兩個(gè)數(shù)x1,x2為根的一元二次方程(二次項(xiàng)系數(shù)為1)是x2(x1x2)xx1·x20例2 已知方程的一個(gè)根是2,求它的另一個(gè)根及k的值分析:由于已知了方程的一個(gè)根,可以直接將這一根代入,求出k的值,再由方程解出另一個(gè)根但由于我們學(xué)習(xí)了韋達(dá)定理,又可以利用韋達(dá)定理來解題,即由于已知了方程的一個(gè)根及方程的二次項(xiàng)系數(shù)和常數(shù)項(xiàng),于是可以利用兩根之積求出方程的另一個(gè)根,再由兩根之和求出k的值解法一:2是方程的一個(gè)根,5×22k×260,k7所以,方程就為5x27x60,解得x12,x2所以,方程的另一個(gè)根為,k的值為7解法二:設(shè)方程的另一個(gè)根為x1,
6、則 2x1,x1由 ()2,得 k7所以,方程的另一個(gè)根為,k的值為7例3 已知關(guān)于x的方程x22(m2)xm240有兩個(gè)實(shí)數(shù)根,并且這兩個(gè)實(shí)數(shù)根的平方和比兩個(gè)根的積大21,求m的值分析:本題可以利用韋達(dá)定理,由實(shí)數(shù)根的平方和比兩個(gè)根的積大21得到關(guān)于m的方程,從而解得m的值但在解題中需要特別注意的是,由于所給的方程有兩個(gè)實(shí)數(shù)根,因此,其根的判別式應(yīng)大于零解:設(shè)x1,x2是方程的兩根,由韋達(dá)定理,得 x1x22(m2),x1·x2m24 x12x22x1·x221, (x1x2)23 x1·x221,即 2(m2)23(m24)21,化簡(jiǎn),得 m216m170,
7、解得 m1,或m17當(dāng)m1時(shí),方程為x26x50,0,滿足題意;當(dāng)m17時(shí),方程為x230x2930,3024×1×2930,不合題意,舍去綜上,m17說明:(1)在本題的解題過程中,也可以先研究滿足方程有兩個(gè)實(shí)數(shù)根所對(duì)應(yīng)的m的范圍,然后再由“兩個(gè)實(shí)數(shù)根的平方和比兩個(gè)根的積大21”求出m的值,取滿足條件的m的值即可(1)在今后的解題過程中,如果僅僅由韋達(dá)定理解題時(shí),還要考慮到根的判別式是否大于或大于零因?yàn)?,韋達(dá)定理成立的前提是一元二次方程有實(shí)數(shù)根例4 已知兩個(gè)數(shù)的和為4,積為12,求這兩個(gè)數(shù)分析:我們可以設(shè)出這兩個(gè)數(shù)分別為x,y,利用二元方程求解出這兩個(gè)數(shù)也可以利用韋達(dá)定理
8、轉(zhuǎn)化出一元二次方程來求解解法一:設(shè)這兩個(gè)數(shù)分別是x,y,則 xy4, xy12 由,得 y4x, 代入,得x(4x)12,即 x24x120,x12,x26 或因此,這兩個(gè)數(shù)是2和6解法二:由韋達(dá)定理可知,這兩個(gè)數(shù)是方程 x24x120的兩個(gè)根 解這個(gè)方程,得 x12,x26所以,這兩個(gè)數(shù)是2和6說明:從上面的兩種解法我們不難發(fā)現(xiàn),解法二(直接利用韋達(dá)定理來解題)要比解法一簡(jiǎn)捷例5 若x1和x2分別是一元二次方程2x25x30的兩根(1)求| x1x2|的值; (2)求的值;(3)x13x23解:x1和x2分別是一元二次方程2x25x30的兩根, ,(1)| x1x2|2x12+ x222 x
9、1x2(x1x2)24 x1x2 6, | x1x2|(2)(3)x13x23(x1x2)( x12x1x2x22)(x1x2) ( x1x2) 23x1x2 ()×()23×()說明:一元二次方程的兩根之差的絕對(duì)值是一個(gè)重要的量,今后我們經(jīng)常會(huì)遇到求這一個(gè)量的問題,為了解題簡(jiǎn)便,我們可以探討出其一般規(guī)律:設(shè)x1和x2分別是一元二次方程ax2bxc0(a0),則,| x1x2| 于是有下面的結(jié)論:若x1和x2分別是一元二次方程ax2bxc0(a0),則| x1x2|(其中b24ac)今后,在求一元二次方程的兩根之差的絕對(duì)值時(shí),可以直接利用上面的結(jié)論例6 若關(guān)于x的一元二次方
10、程x2xa40的一根大于零、另一根小于零,求實(shí)數(shù)a的取值范圍解:設(shè)x1,x2是方程的兩根,則 x1x2a40, 且(1)24(a4)0 由得 a4,由得 aa的取值范圍是a4練 習(xí)1選擇題:(1)方程的根的情況是 ( ) (A)有一個(gè)實(shí)數(shù)根 (B)有兩個(gè)不相等的實(shí)數(shù)根(C)有兩個(gè)相等的實(shí)數(shù)根 (D)沒有實(shí)數(shù)根(2)若關(guān)于x的方程mx2 (2m1)xm0有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍是 ( ) (A)m (B)m (C)m,且m0 (D)m,且m0 2填空:(1)若方程x23x10的兩根分別是x1和x2,則 (2)方程mx2x2m0(m0)的根的情況是 (3)以3和1為根的一元二次方程
11、是 3已知,當(dāng)k取何值時(shí),方程kx2axb0有兩個(gè)不相等的實(shí)數(shù)根?4已知方程x23x10的兩根為x1和x2,求(x13)( x23)的值習(xí)題2.1A 組1選擇題:(1)已知關(guān)于x的方程x2kx20的一個(gè)根是1,則它的另一個(gè)根是( ) (A)3 (B)3 (C)2 (D)2(2)下列四個(gè)說法: 方程x22x70的兩根之和為2,兩根之積為7;方程x22x70的兩根之和為2,兩根之積為7;方程3 x270的兩根之和為0,兩根之積為;方程3 x22x0的兩根之和為2,兩根之積為0其中正確說法的個(gè)數(shù)是 ( ) (A)1個(gè) (B)2個(gè) (C)3個(gè) (D)4個(gè)(3)關(guān)于x的一元二次方程ax25xa2a0的一
12、個(gè)根是0,則a的值是( )(A)0 (B)1 (C)1 (D)0,或12填空:(1)方程kx24x10的兩根之和為2,則k (2)方程2x2x40的兩根為,則22 (3)已知關(guān)于x的方程x2ax3a0的一個(gè)根是2,則它的另一個(gè)根是 (4)方程2x22x10的兩根為x1和x2,則| x1x2| 3試判定當(dāng)m取何值時(shí),關(guān)于x的一元二次方程m2x2(2m1) x10有兩個(gè)不相等的實(shí)數(shù)根?有兩個(gè)相等的實(shí)數(shù)根?沒有實(shí)數(shù)根?4求一個(gè)一元二次方程,使它的兩根分別是方程x27x10各根的相反數(shù)B 組1選擇題:若關(guān)于x的方程x2(k21) xk10的兩根互為相反數(shù),則k的值為 ( ) (A)1,或1 (B)1
13、(C)1 (D)02填空:(1)若m,n是方程x22005x10的兩個(gè)實(shí)數(shù)根,則m2nmn2mn的值等于 (2)如果a,b是方程x2x10的兩個(gè)實(shí)數(shù)根,那么代數(shù)式a3a2bab2b3的值是 3已知關(guān)于x的方程x2kx20(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;(2)設(shè)方程的兩根為x1和x2,如果2(x1x2)x1x2,求實(shí)數(shù)k的取值范圍4一元二次方程ax2bxc0(a0)的兩根為x1和x2求:(1)| x1x2|和;(2)x13x235關(guān)于x的方程x24xm0的兩根為x1,x2滿足| x1x2|2,求實(shí)數(shù)m的值C 組1選擇題:(1)已知一個(gè)直角三角形的兩條直角邊長(zhǎng)恰好是方程2x28x70的兩根,
14、則這個(gè)直角三角形的斜邊長(zhǎng)等于 ( ) (A) (B)3 (C)6 (D)9(2)若x1,x2是方程2x24x10的兩個(gè)根,則的值為 ( ) (A)6 (B)4 (C)3 (D)(3)如果關(guān)于x的方程x22(1m)xm20有兩實(shí)數(shù)根,則的取值范圍為 ( ) (A) (B) (C)1 (D)1 (4)已知a,b,c是ABC的三邊長(zhǎng),那么方程cx2(ab)x0的根的情況是 ( ) (A)沒有實(shí)數(shù)根 (B)有兩個(gè)不相等的實(shí)數(shù)根(C)有兩個(gè)相等的實(shí)數(shù)根 (D)有兩個(gè)異號(hào)實(shí)數(shù)根2填空:若方程x28xm0的兩根為x1,x2,且3x12x218,則m 3 已知x1,x2是關(guān)于x的一元二次方程4kx24kxk1
15、0的兩個(gè)實(shí)數(shù)根(1)是否存在實(shí)數(shù)k,使(2x1x2)( x12 x2)成立?若存在,求出k的值;若不存在,說明理由;(2)求使2的值為整數(shù)的實(shí)數(shù)k的整數(shù)值;(3)若k2,試求的值4已知關(guān)于x的方程(1)求證:無論m取什么實(shí)數(shù)時(shí),這個(gè)方程總有兩個(gè)相異實(shí)數(shù)根;(2)若這個(gè)方程的兩個(gè)實(shí)數(shù)根x1,x2滿足|x2|x1|2,求m的值及相應(yīng)的x1,x25若關(guān)于x的方程x2xa0的一個(gè)大于1、零一根小于1,求實(shí)數(shù)a的取值范圍2.1 一元二次方程練習(xí)1 (1)C (2)D 2 (1)3 (2)有兩個(gè)不相等的實(shí)數(shù)根 (3)x22x303k4,且k041 提示:(x13)( x23)x1 x23(x1x2)9習(xí)題
16、21A 組1 (1)C (2)B 提示:和是錯(cuò)的,對(duì)于,由于方程的根的判別式0,所以方程沒有實(shí)數(shù)根;對(duì)于,其兩根之和應(yīng)為 (3)C 提示:當(dāng)a0時(shí),方程不是一元二次方程,不合題意2 (1)2 (2) (3)6 (3)3當(dāng)m,且m0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)m時(shí),方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)m時(shí),方程沒有實(shí)數(shù)根4設(shè)已知方程的兩根分別是x1和x2,則所求的方程的兩根分別是x1和x2,x1x27,x1x21,(x1)(x2)7,(x1)×(x2)x1x21,所求的方程為y27y10B組1C 提示:由于k=1時(shí),方程為x220,沒有實(shí)數(shù)根,所以k12(1)2006 提示:mn2005,m
17、n1,m2nmn2mnmn(mn1)1×(20051)2006 (2)3 提示;ab1,ab1,a3a2bab2b3a2(ab)b2(ab)(ab)( a2b2)(ab)( ab) 22ab(1)×(1)22×(1)33(1)(k)24×1×(2)k280,方程一定有兩個(gè)不相等的實(shí)數(shù)根 (2)x1x2k,x1x22,2k2,即k14(1)| x1x2|,;(2)x13x235| x1x2|,m3把m3代入方程,0,滿足題意,m3C組1(1)B (2)A (3)C 提示:由0,得m,2(1m)1 (4)B 提示:a,b,c是ABC的三邊長(zhǎng),abc
18、,(ab)2c202(1)12 提示:x1x28,3x12x22(x1x2)x12×8x118,x12,x26,mx1x2123(1)假設(shè)存在實(shí)數(shù)k,使(2x1x2)( x12 x2)成立一元二次方程4kx24kxk10有兩個(gè)實(shí)數(shù)根,k0,且16k216k(k+1)=16k0,k0x1x21,x1x2, (2x1x2)( x12 x2)2 x1251x22 x22 2(x1x2)29 x1x22, 即,解得k,與k0相矛盾,所以,不存在實(shí)數(shù)k,使(2x1x2)( x12 x2)成立(2)2 ,要使2的值為整數(shù),只須k1能整除4而k為整數(shù),k1只能取±1,±2,±4又k0,k11, k1只能取1,2,4,k2,3,5能使2的值為整
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年藝術(shù)心理學(xué)研究生入學(xué)考試試卷及答案
- 2025年職業(yè)道德與法律專業(yè)本科畢業(yè)考試試卷及答案
- 2025年現(xiàn)代農(nóng)業(yè)與農(nóng)村發(fā)展新模式能力測(cè)評(píng)試題及答案
- 2025年人因工程師專業(yè)考試試題及答案
- 2025年人工智能應(yīng)用工程師資格考試試卷及答案
- 2025年金融及保險(xiǎn)法專業(yè)考試試卷及答案
- 2025年老年服務(wù)與管理職業(yè)資格考試試卷及答案
- 2025年國(guó)防教育與安全意識(shí)的能力考核考試卷及答案
- 2025年初中生語文能力測(cè)評(píng)試卷及答案
- 電商的下半年工作計(jì)劃
- 2024統(tǒng)編版七年級(jí)道德與法治下冊(cè)期末測(cè)試卷(含答案)
- 酒店經(jīng)銷商合同協(xié)議書
- 2025春季學(xué)期國(guó)開電大??啤吨屑?jí)財(cái)務(wù)會(huì)計(jì)(二)》一平臺(tái)在線形考(第二次形考任務(wù))試題及答案
- 某市人民醫(yī)院裝修工程項(xiàng)目可行性研究報(bào)告
- 【滇人版】《信息技術(shù)》四年級(jí)第4冊(cè) 第1課《搜索引擎》課件
- 2025年中考生物模擬測(cè)試卷及答案
- 國(guó)開《理工英語1》形考任務(wù)綜合測(cè)試
- 高血壓的治療和護(hù)理
- 種子輪投資協(xié)議合同協(xié)議
- 2025年教師招聘考試教育學(xué)心理學(xué)試題庫含答案
- 車輛油耗管理制度模板
評(píng)論
0/150
提交評(píng)論