函數(shù)對稱性、周期性和奇偶性規(guī)律總結(jié)_第1頁
函數(shù)對稱性、周期性和奇偶性規(guī)律總結(jié)_第2頁
函數(shù)對稱性、周期性和奇偶性規(guī)律總結(jié)_第3頁
函數(shù)對稱性、周期性和奇偶性規(guī)律總結(jié)_第4頁
函數(shù)對稱性、周期性和奇偶性規(guī)律總結(jié)_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、函數(shù)對稱性、周期性和奇偶性 關(guān)嶺民中數(shù)學(xué)組(一)、同一函數(shù)的函數(shù)的奇偶性與對稱性:(奇偶性是一種特殊的對稱性)1、奇偶性:(1) 奇函數(shù)關(guān)于(0,0)對稱,奇函數(shù)有關(guān)系式(2)偶函數(shù)關(guān)于y(即x=0)軸對稱,偶函數(shù)有關(guān)系式 2、奇偶性的拓展 : 同一函數(shù)的對稱性 (1)函數(shù)的軸對稱:函數(shù)關(guān)于對稱也可以寫成 或 若寫成:,則函數(shù)關(guān)于直線 對稱 證明:設(shè)點(diǎn)在上,通過可知,即點(diǎn)上,而點(diǎn)與點(diǎn)關(guān)于x=a對稱。得證。說明:關(guān)于對稱要求橫坐標(biāo)之和為,縱坐標(biāo)相等。 關(guān)于對稱,函數(shù)關(guān)于對稱 關(guān)于對稱,函數(shù)關(guān)于對稱 關(guān)于對稱,函數(shù)關(guān)于對稱(2)函數(shù)的點(diǎn)對稱:函數(shù)關(guān)于點(diǎn)對稱 或 若寫成:,函數(shù)關(guān)于點(diǎn) 對稱 證明:設(shè)

2、點(diǎn)在上,即,通過可知,所以,所以點(diǎn)也在上,而點(diǎn)與關(guān)于對稱得證。 說明: 關(guān)于點(diǎn)對稱要求橫坐標(biāo)之和為,縱坐標(biāo)之和為,如 之和為 。(3)函數(shù)關(guān)于點(diǎn)對稱:假設(shè)函數(shù)關(guān)于對稱,即關(guān)于任一個(gè)值,都有兩個(gè)y值與其對應(yīng),顯然這不符合函數(shù)的定義,故函數(shù)自身不可能關(guān)于對稱。但在曲線c(x,y)=0,則有可能會出現(xiàn)關(guān)于對稱,比如圓它會關(guān)于y=0對稱。(4)復(fù)合函數(shù)的奇偶性的性質(zhì)定理:性質(zhì)1、復(fù)數(shù)函數(shù)yfg(x)為偶函數(shù),則fg(x)fg(x)。復(fù)合函數(shù)yfg(x)為奇函數(shù),則fg(x)fg(x)。性質(zhì)2、復(fù)合函數(shù)yf(xa)為偶函數(shù),則f(xa)f(xa);復(fù)合函數(shù)yf(xa)為奇函數(shù),則f(xa)f(ax)。性

3、質(zhì)3、復(fù)合函數(shù)yf(xa)為偶函數(shù),則yf(x)關(guān)于直線xa軸對稱。復(fù)合函數(shù)yf(xa)為奇函數(shù),則yf(x)關(guān)于點(diǎn)(a,0)中心對稱。總結(jié):x的系數(shù)一個(gè)為1,一個(gè)為-1,相加除以2,可得對稱軸方程總結(jié):x的系數(shù)一個(gè)為1,一個(gè)為-1,f(x)整理成兩邊,其中一個(gè)的系數(shù)是為1,另一個(gè)為-1,存在對稱中心??偨Y(jié):x的系數(shù)同為為1,具有周期性。(二)、兩個(gè)函數(shù)的圖象對稱性1、與關(guān)于X軸對稱。證明:設(shè)上任一點(diǎn)為 則,所以經(jīng)過點(diǎn)與關(guān)于X軸對稱,與關(guān)于X軸對稱.注:換種說法:與若滿足,即它們關(guān)于對稱。2、與關(guān)于Y軸對稱。證明:設(shè)上任一點(diǎn)為則,所以經(jīng)過點(diǎn) 與關(guān)于Y軸對稱,與關(guān)于Y軸對稱。注:因?yàn)榇氲盟越?jīng)

4、過點(diǎn)換種說法:與若滿足,即它們關(guān)于對稱。 3、與關(guān)于直線 對稱。證明:設(shè)上任一點(diǎn)為則,所以經(jīng)過點(diǎn)與關(guān)于軸對稱,與關(guān)于直線 對稱。注:換種說法:與若滿足,即它們關(guān)于對稱。4、與關(guān)于直線對稱。證明:設(shè)上任一點(diǎn)為則,所以經(jīng)過點(diǎn)與關(guān)于軸對稱,與關(guān)于直線對稱.注:換種說法:與若滿足,即它們關(guān)于對稱。5、關(guān)于點(diǎn)(a,b)對稱。證明:設(shè)上任一點(diǎn)為則,所以經(jīng)過點(diǎn)與關(guān)于點(diǎn)(a,b)對稱,關(guān)于點(diǎn)(a,b)對稱.注:換種說法:與若滿足,即它們關(guān)于點(diǎn)(a,b)對稱。6、與關(guān)于直線對稱。證明:設(shè)上任一點(diǎn)為則,所以經(jīng)過點(diǎn),經(jīng)過點(diǎn),與關(guān)于直線對稱,與關(guān)于直線對稱。三、總規(guī)律:定義在上的函數(shù),在對稱性、周期性和奇偶性這三條性

5、質(zhì)中,只要有兩條存在,則第三條一定存在。一、 同一函數(shù)的周期性、對稱性問題(即函數(shù)自身)(一)、函數(shù)的周期性:對于函數(shù),如果存在一個(gè)不為零的常數(shù)T,使得當(dāng)x取定義域內(nèi)的每一個(gè)值時(shí),都有都成立,那么就把函數(shù)叫做周期函數(shù),不為零的常數(shù)T叫做這個(gè)函數(shù)的周期。如果所有的周期中存在著一個(gè)最小的正數(shù),就把這個(gè)最小的正數(shù)叫做最小正周期。1、 周期性: (1)函數(shù)滿足如下關(guān)系式,則 A、 B、 C、或(等式右邊加負(fù)號亦成立) D、其他情形 (2)函數(shù)滿足且,則可推出即可以得到的周期為2(b-a),即可以得到“如果函數(shù)在定義域內(nèi)關(guān)于垂直于x軸兩條直線對稱,則函數(shù)一定是周期函數(shù)” (3)如果奇函數(shù)滿足則可以推出其

6、周期是2T,且可以推出對稱軸為,根據(jù)可以找出其對稱中心為(以上) 如果偶函數(shù)滿足則亦可以推出周期是2T,且可以推出對稱中心為,根據(jù)可以推出對稱軸為 (以上)(4)如果奇函數(shù)滿足(),則函數(shù)是以4T為周期的周期性函數(shù)。如果偶函數(shù)滿足(),則函數(shù)是以2T為周期的周期性函數(shù)。定理1:若函數(shù)在R上滿足,且(其中),則函數(shù)以為周期. 定理2:若函數(shù)在R上滿足,且(其中),則函數(shù)以為周期.定理3:若函數(shù)在R上滿足,且(其中),則函數(shù)以為周期.定理4:若函數(shù)f(x)的圖像關(guān)于直線x=a和x=b都對稱,則f(x)是周期函數(shù),2(b-a)是它的一個(gè)周期(未必是最小正周期)。定理5:若函數(shù)f(x)的圖像關(guān)于點(diǎn)(a,c)和(b,c)都成中心對稱,則f(x)是周期函數(shù),2(b-a)是它的一個(gè)周期(未必是最小正周期)。定理6:若函數(shù)f(x)關(guān)于點(diǎn)(a,c)和x=b都對稱,則f(x)是周期,4(b-a)是它的一個(gè)周期(未必是最小正周期)。定理7:若函數(shù)f(x)滿足f(x-a)=f(x+a)(a0),則f(x)是周期函數(shù),2a是它的一個(gè)周期。定理8:若函數(shù)f(x)滿足f(x+a)=-

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論