




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、高三數學立體幾何經典例題分析高考立體幾何試題一般共有4道(客觀題3道, 主觀題1道), 共計總分27分左右,考查的知識點在20個以內. 選擇填空題考核立幾中的計算型問題, 而解答題著重考查立幾中的邏輯推理型問題, 當然, 二者均應以正確的空間想象為前提. 隨著新的課程改革的進一步實施,立體幾何考題正朝著”多一點思考,少一點計算”的發(fā)展.從歷年的考題變化看, 以多面體和旋轉體為載體的線面位置關系的論證,角與距離的探求是??汲P碌臒衢T話題.例1 四棱錐PABCD的底面是邊長為a的正方形,PB面ABCD.(1)若面PAD與面ABCD所成的二面角為60°,求這個四棱錐的體積;(2)證明無論四
2、棱錐的高怎樣變化,面PAD與面PCD所成的二面角恒大于90°講解:(1)正方形ABCD是四棱錐PABCD的底面, 其面積為從而只要算出四棱錐的高就行了.面ABCD,BA是PA在面ABCD上的射影.又DAAB, PADA, PAB是面PAD與面ABCD所成的二面角的平面角, PAB=60°. 而PB是四棱錐PABCD的高,PB=AB·tg60°=a, .(2)不論棱錐的高怎樣變化,棱錐側面PAD與PCD恒為全等三角形. 作AEDP,垂足為E,連結EC,則ADECDE, 是面PAD與面PCD所成的二面角的平面角. 設AC與DB相交于點O,連結EO,則EOAC
3、, 在 故平面PAD與平面PCD所成的二面角恒大于90°. 本小題主要考查線面關系和二面角的概念,以及空間想象能力和邏輯推理能力, 具有一定的探索性, 是一道設計新穎, 特征鮮明的好題.例2 如圖,直三棱柱ABC-A1B1C1的底面ABC為等腰直角三角形,ACB=900,AC=1,C點到AB1的距離為CE=,D為AB的中點.(1)求證:AB1平面CED;(2)求異面直線AB1與CD之間的距離;(3)求二面角B1ACB的平面角.講解:(1)D是AB中點,ABC為等腰直角三角形,ABC=900,CDAB又AA1平面ABC,CDAA1.CD平面A1B1BA CDAB1,又CEAB1, AB
4、1平面CDE;(2)由CD平面A1B1BA CDDEAB1平面CDE DEAB1DE是異面直線AB1與CD的公垂線段CE=,AC=1 , CD=;(3)連結B1C,易證B1CAC,又BCAC , B1CB是二面角B1ACB的平面角.在RtCEA中,CE=,BC=AC=1,B1AC=600, , , .作出公垂線段和二面角的平面角是正確解題的前提, 當然, 準確地作出應當有嚴格的邏輯推理作為基石.例3 如圖al是120°的二面角,A,B兩點在棱上,AB=2,D在內,三角形ABD是等腰直角三角形,DAB=90°,C在內,ABC是等腰直角三角形ACB=(I) 求三棱錐DABC的體
5、積;(2)求二面角DACB的大?。?(3)求異面直線AB、CD所成的角. 講解: (1) 過D向平面做垂線,垂足為O,連強OA并延長至E. 為二面角al的平面角.是等腰直角三角形,斜邊AB=2.又D到平面的距離DO=(2)過O在內作OMAC,交AC的反向延長線于M,連結DM.則ACDM.DMO 為二面角DACB的平面角. 又在DOA中,OA=2cos60°=1.且 (3)在平在內,過C作AB的平行線交AE于F,DCF為異面直線AB、CD所成的角. 為等腰直角三角形,又AF等于C到AB的距離,即ABC斜邊上的高,異面直線AB,CD所成的角為arctg比較例2與例3解法的異同, 你會得出
6、怎樣的啟示? 想想看. 例4在邊長為a的正三角形的三個角處各剪去一個四邊形這個四邊形是由兩個全等的直角三角形組成的,并且這三個四邊形也全等,如圖若用剩下的部分折成一個無蓋的正三棱柱形容器,如圖則當容器的高為多少時,可使這個容器的容積最大,并求出容積的最大值 圖 圖 講解: 設容器的高為x則容器底面正三角形的邊長為, . 當且僅當 .故當容器的高為時,容器的容積最大,其最大容積為對學過導數的同學來講,三次函數的最值問題用導數求解是最方便的,請讀者不妨一試. 另外,本題的深化似乎與2002年全國高考文科數學壓軸題有關,還請做做對照. 類似的問題是:某企業(yè)設計一個容積為V的密閉容器,下部是圓柱形,上
7、部是半球形,當圓柱的底面半徑r和圓柱的高h為何值時,制造這個密閉容器的用料最?。慈萜鞯谋砻娣e最?。? 例5 已知三棱錐PABC中,PC底面ABC,AB=BC,D、F分別為AC、PC的中點,DEAP于E (1)求證:AP平面BDE; (2)求證:平面BDE平面BDF;(3)若AEEP=12,求截面BEF分三棱錐PABC所成兩部分的體積比講解: (1)PC底面ABC,BD平面ABC,PCBD由AB=BC,D為AC的中點,得BDAC又PCAC=C,BD平面PAC 又PA平面、PAC,BDPA由已知DEPA,DEBD=D,AP平面BDE (2)由BD平面PAC,DE平面PAC,得BDDE由D、F分別
8、為AC、PC的中點,得DF/AP由已知,DEAP,DEDF. BDDF=D,DE平面BDF又DE平面BDE,平面BDE平面BDF (3)設點E和點A到平面PBC的距離分別為h1和h2則 h1h2=EPAP=23, 故截面BEF分三棱錐PABC所成兩部分體積的比為12或21值得注意的是, “截面BEF分三棱錐PABC所成兩部分的體積比”并沒有說明先后順序, 因而最終的比值答案一般應為兩個, 希不要犯這種”會而不全”的錯誤.例6 已知圓錐的側面展開圖是一個半圓,它被過底面中心O1且平行于母線AB的平面所截,若截面與圓錐側面的交線是焦參數(焦點到準線的距離)為p的拋物線.(1)求圓錐的母線與底面所成
9、的角;(2)求圓錐的全面積 講解: (1)設圓錐的底面半徑為R,母線長為l,由題意得:,即,所以母線和底面所成的角為(2)設截面與圓錐側面的交線為MON,其中O為截面與AC的交點,則OO1/AB且在截面MON內,以OO1所在有向直線為y軸,O為原點,建立坐標系,則O為拋物的頂點,所以拋物線方程為x2=2py,點N的坐標為(R,R),代入方程得R2=2p(R),得R=2p,l=2R=4p.圓錐的全面積為.將立體幾何與解析幾何相鏈接, 頗具新意, 預示了高考命題的新動向. 類似請思考如下問題: 一圓柱被一平面所截,截口是一個橢圓已知橢圓的長軸長為5,短軸長為4,被截后幾何體的最短側面母 線長為1,
10、則該幾何體的體積等于 例7 如圖,幾何體ABCDE中,ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a, DC=a,F、G分別為EB和AB的中點.(1)求證:FD平面ABC;(2)求證:AFBD; (3) 求二面角BFCG的正切值.講解: F、G分別為EB、AB的中點,FG=EA,又EA、DC都垂直于面ABC, FG=DC, 四邊形FGCD為平行四邊形,FDGC,又GC面ABC, FD面ABC.(2)AB=EA,且F為EB中點,AFEB 又FGEA,EA面ABCFG面ABC G為等邊ABC,AB邊的中點,AGGC.AFGC又FDGC,AFFD 由、知AF面EBD,又BD面EB
11、D,AFBD.(3)由(1)、(2)知FGGB,GCGB,GB面GCF.過G作GHFC,垂足為H,連HB,HBFC.GHB為二面角B-FC-G的平面角.易求.例8 如圖,正方體ABCDA1B1C1D1的棱長為1,P、Q分別是線段AD1和BD上的點,且D1PPA=DQQB=512. (1) 求證PQ平面CDD1C1; (2) 求證PQAD; (3) 求線段PQ的長. 講解: (1)在平面AD1內,作PP1AD與DD1交于點P1,在平面AC內,作QQ1BC交CD于點Q1,連結P1Q1. , PP1QQ1 .由四邊形PQQ1P1為平行四邊形, 知PQP1Q1 而P1Q1平面CDD1C1, 所以PQ平面CDD1C1(2)AD平面D1DCC1, ADP1Q1,又PQP1Q1, ADPQ.(3)由(1)知P1Q1 PQ,,而棱長CD=1. DQ1=. 同理可求得 P1D=.在RtP1DQ1中,應用勾股定理, 立得P1Q1=.做為本題的深化, 筆者提出這樣的問題: P, Q分別是BD,上的動點,試求的最小值, 你能夠應用函數方法計算嗎? 試試看. 并與如下2002年全國高考試題做以對照, 你會得到什么啟示?如圖,正方形ABCD、ABEF的邊長都是1,而且平面ABCD、ABEF互相垂直。
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030中國僵燒鎂砂行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 2025至2030中國企業(yè)知識產權管理軟件行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 2025至2030中國個人護理用高嶺土粉行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 2025至2030中國萬乃洛韋口服行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 2025至2030中國CBD大麻油行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 2025-2030年黃金業(yè)務產業(yè)深度調研及發(fā)展趨勢與投資戰(zhàn)略研究報告
- 2025-2030年面膜市場前景分析及投資策略與風險管理研究報告
- 2025-2030年金融POS機市場市場現狀供需分析及投資評估規(guī)劃分析研究報告
- 高新技術產業(yè)廠房空地租賃與知識產權保護合同
- 植物園參觀科普教育合同
- 2025至2030年中國高鎳三元材料產業(yè)發(fā)展動態(tài)及投資方向分析報告
- 2025年畢節(jié)市大方富民村鎮(zhèn)銀行招聘題庫帶答案分析
- (2025)國家公務員考試時事政治必考試題庫與答案
- 2025影視拍攝場地布置合同協(xié)議書
- 2017司考題目及答案
- 雜志分揀打包服務合同4篇
- 2025年D-對羥基苯甘氨酸項目市場調查研究報告
- 國泰君安補簽風險協(xié)議書
- 防排煙系統(tǒng)設計畢業(yè)答辯
- 2025年人工智能應用技術職業(yè)資格考試試卷及答案
- 預防強對流天氣安全教育
評論
0/150
提交評論