2022年廣西玉林市北流實驗中學數(shù)學高三第一學期期末檢測模擬試題含解析_第1頁
2022年廣西玉林市北流實驗中學數(shù)學高三第一學期期末檢測模擬試題含解析_第2頁
2022年廣西玉林市北流實驗中學數(shù)學高三第一學期期末檢測模擬試題含解析_第3頁
2022年廣西玉林市北流實驗中學數(shù)學高三第一學期期末檢測模擬試題含解析_第4頁
2022年廣西玉林市北流實驗中學數(shù)學高三第一學期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復數(shù)z1=3+4i,z2=a+i,且z1是實數(shù),則實數(shù)a等于()A. B. C.- D.-2.已知函數(shù),則在上不單調的一個充分不必要條件可以是()A. B. C.或 D.3.若函數(shù)函數(shù)只有1個零點,則的取值范圍是()A. B. C. D.4.某中學有高中生人,初中生人為了解該校學生自主鍛煉的時間,采用分層抽樣的方法從高生和初中生中抽取一個容量為的樣本.若樣本中高中生恰有人,則的值為()A. B. C. D.5.數(shù)列{an}是等差數(shù)列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,則實數(shù)λ的最大值為()A. B. C. D.6.設為銳角,若,則的值為()A. B. C. D.7.若集合,,則()A. B. C. D.8.已知,則p是q的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件9.如圖示,三棱錐的底面是等腰直角三角形,,且,,則與面所成角的正弦值等于()A. B. C. D.10.若復數(shù)滿足,則對應的點位于復平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知函數(shù)f(x)=xex2+axeA.1 B.-1 C.a(chǎn) D.-a12.已知條件,條件直線與直線平行,則是的()A.充要條件 B.必要不充分條件 C.充分不必要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.關于函數(shù)有下列四個命題:①函數(shù)在上是增函數(shù);②函數(shù)的圖象關于中心對稱;③不存在斜率小于且與函數(shù)的圖象相切的直線;④函數(shù)的導函數(shù)不存在極小值.其中正確的命題有______.(寫出所有正確命題的序號)14.(5分)已知函數(shù),則不等式的解集為____________.15.在中,內角的對邊分別為,已知,則的面積為___________.16.如圖所示梯子結構的點數(shù)依次構成數(shù)列,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,.(1)求函數(shù)的單調遞增區(qū)間;(2)的三個內角、、所對邊分別為、、,若且,求面積的取值范圍.18.(12分)如圖,在正四棱柱中,已知,.(1)求異面直線與直線所成的角的大?。唬?)求點到平面的距離.19.(12分)已知.(1)若曲線在點處的切線也與曲線相切,求實數(shù)的值;(2)試討論函數(shù)零點的個數(shù).20.(12分)11月,2019全國美麗鄉(xiāng)村籃球大賽在中國農(nóng)村改革的發(fā)源地-安徽鳳陽舉辦,其間甲、乙兩人輪流進行籃球定點投籃比賽(每人各投一次為一輪),在相同的條件下,每輪甲乙兩人在同一位置,甲先投,每人投一次球,兩人有1人命中,命中者得1分,未命中者得-1分;兩人都命中或都未命中,兩人均得0分,設甲每次投球命中的概率為,乙每次投球命中的概率為,且各次投球互不影響.(1)經(jīng)過1輪投球,記甲的得分為,求的分布列;(2)若經(jīng)過輪投球,用表示經(jīng)過第輪投球,累計得分,甲的得分高于乙的得分的概率.①求;②規(guī)定,經(jīng)過計算機計算可估計得,請根據(jù)①中的值分別寫出a,c關于b的表達式,并由此求出數(shù)列的通項公式.21.(12分)已知,函數(shù).(1)若函數(shù)在上為減函數(shù),求實數(shù)的取值范圍;(2)求證:對上的任意兩個實數(shù),,總有成立.22.(10分)分別為的內角的對邊.已知.(1)若,求;(2)已知,當?shù)拿娣e取得最大值時,求的周長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】分析:計算,由z1,是實數(shù)得,從而得解.詳解:復數(shù)z1=3+4i,z2=a+i,.所以z1,是實數(shù),所以,即.故選A.點睛:本題主要考查了復數(shù)共軛的概念,屬于基礎題.2、D【解析】

先求函數(shù)在上不單調的充要條件,即在上有解,即可得出結論.【詳解】,若在上不單調,令,則函數(shù)對稱軸方程為在區(qū)間上有零點(可以用二分法求得).當時,顯然不成立;當時,只需或,解得或.故選:D.【點睛】本題考查含參數(shù)的函數(shù)的單調性及充分不必要條件,要注意二次函數(shù)零點的求法,屬于中檔題.3、C【解析】

轉化有1個零點為與的圖象有1個交點,求導研究臨界狀態(tài)相切時的斜率,數(shù)形結合即得解.【詳解】有1個零點等價于與的圖象有1個交點.記,則過原點作的切線,設切點為,則切線方程為,又切線過原點,即,將,代入解得.所以切線斜率為,所以或.故選:C【點睛】本題考查了導數(shù)在函數(shù)零點問題中的應用,考查了學生數(shù)形結合,轉化劃歸,數(shù)學運算的能力,屬于較難題.4、B【解析】

利用某一層樣本數(shù)等于某一層的總體個數(shù)乘以抽樣比計算即可.【詳解】由題意,,解得.故選:B.【點睛】本題考查簡單隨機抽樣中的分層抽樣,某一層樣本數(shù)等于某一層的總體個數(shù)乘以抽樣比,本題是一道基礎題.5、D【解析】

利用等差數(shù)列通項公式推導出λ,由d∈[1,2],能求出實數(shù)λ取最大值.【詳解】∵數(shù)列{an}是等差數(shù)列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,∴1+3d+λ(1+9d)+1+15d=15,解得λ,∵d∈[1,2],λ2是減函數(shù),∴d=1時,實數(shù)λ取最大值為λ.故選D.【點睛】本題考查實數(shù)值的最大值的求法,考查等差數(shù)列的性質等基礎知識,考查運算求解能力,是基礎題.6、D【解析】

用誘導公式和二倍角公式計算.【詳解】.故選:D.【點睛】本題考查誘導公式、余弦的二倍角公式,解題關鍵是找出已知角和未知角之間的聯(lián)系.7、A【解析】

用轉化的思想求出中不等式的解集,再利用并集的定義求解即可.【詳解】解:由集合,解得,則故選:.【點睛】本題考查了并集及其運算,分式不等式的解法,熟練掌握并集的定義是解本題的關鍵.屬于基礎題.8、B【解析】

根據(jù)誘導公式化簡再分析即可.【詳解】因為,所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分條件.故選:B【點睛】本題考查充分與必要條件的判定以及誘導公式的運用,屬于基礎題.9、A【解析】

首先找出與面所成角,根據(jù)所成角所在三角形利用余弦定理求出所成角的余弦值,再根據(jù)同角三角函數(shù)關系求出所成角的正弦值.【詳解】由題知是等腰直角三角形且,是等邊三角形,設中點為,連接,,可知,,同時易知,,所以面,故即為與面所成角,有,故.故選:A.【點睛】本題主要考查了空間幾何題中線面夾角的計算,屬于基礎題.10、D【解析】

利用復數(shù)模的計算、復數(shù)的除法化簡復數(shù),再根據(jù)復數(shù)的幾何意義,即可得答案;【詳解】,對應的點,對應的點位于復平面的第四象限.故選:D.【點睛】本題考查復數(shù)模的計算、復數(shù)的除法、復數(shù)的幾何意義,考查運算求解能力,屬于基礎題.11、A【解析】

令xex=t,構造g(x)=xex,要使函數(shù)f(x)=xex2+axex-a有三個不同的零點x1,x2,【詳解】令xex=t,構造g(x)=xex,求導得g'(x)=故g(x)在-∞,1上單調遞增,在1,+∞上單調遞減,且x<0時,g(x)<0,x>0時,g(x)>0,g(x)max=g(1)=1e,可畫出函數(shù)g(x)的圖象(見下圖),要使函數(shù)f(x)=xex2+axex-a有三個不同的零點x1,x若a>0,即t1+t2=-a<0t1故1-x若a<-4,即t1+t2=-a>4t1故選A.【點睛】解決函數(shù)零點問題,常常利用數(shù)形結合、等價轉化等數(shù)學思想.12、C【解析】

先根據(jù)直線與直線平行確定的值,進而即可確定結果.【詳解】因為直線與直線平行,所以,解得或;即或;所以由能推出;不能推出;即是的充分不必要條件.故選C【點睛】本題主要考查充分條件和必要條件的判定,熟記概念即可,屬于基礎題型.二、填空題:本題共4小題,每小題5分,共20分。13、①②③【解析】

由單調性、對稱性概念、導數(shù)的幾何意義、導數(shù)與極值的關系進行判斷.【詳解】函數(shù)的定義域是,由于,在上遞增,∴函數(shù)在上是遞增,①正確;,∴函數(shù)的圖象關于中心對稱,②正確;,時取等號,∴③正確;,設,則,顯然是即的極小值點,④錯誤.故答案為:①②③.【點睛】本題考查函數(shù)的單調性、對稱性,考查導數(shù)的幾何意義、導數(shù)與極值,解題時按照相關概念判斷即可,屬于中檔題.14、【解析】

易知函數(shù)的定義域為,且,則是上的偶函數(shù).由于在上單調遞增,而在上也單調遞增,由復合函數(shù)的單調性知在上單調遞增,又在上單調遞增,故知在上單調遞增.令,知,則不等式可化為,即,可得,又,是偶函數(shù),可得,由在上單調遞增,可得,則,解得,故不等式的解集為.15、【解析】

由余弦定理先算出c,再利用面積公式計算即可.【詳解】由余弦定理,得,即,解得,故的面積.故答案為:【點睛】本題考查利用余弦定理求解三角形的面積,考查學生的計算能力,是一道基礎題.16、【解析】

根據(jù)圖像歸納,根據(jù)等差數(shù)列求和公式得到答案.【詳解】根據(jù)圖像:,,故,故.故答案為:.【點睛】本題考查了等差數(shù)列的應用,意在考查學生的計算能力和應用能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)利用三角恒等變換思想化簡函數(shù)的解析式為,然后解不等式,可求得函數(shù)的單調遞增區(qū)間;(2)由求得,利用余弦定理結合基本不等式求出的取值范圍,再結合三角形的面積公式可求得面積的取值范圍.【詳解】(1),解不等式,解得.因此,函數(shù)的單調遞增區(qū)間為;(2)由題意,則,,,,解得.由余弦定理得,又,,當且僅當時取等號,所以,的面積.【點睛】本題考查正弦型函數(shù)單調區(qū)間的求解,同時也考查了三角形面積取值范圍的計算,涉及余弦定理和基本不等式的應用,考查計算能力,屬于中等題.18、(1);(2).【解析】

(1)建立空間坐標系,通過求向量與向量的夾角,轉化為異面直線與直線所成的角的大??;(2)先求出面的一個法向量,再用點到面的距離公式算出即可.【詳解】以為原點,所在直線分別為軸建系,設所以,,所以異面直線與直線所成的角的余弦值為,異面直線與直線所成的角的大小為.(2)因為,,設是面的一個法向量,所以有即,令,,故,又,所以點到平面的距離為.【點睛】本題主要考查向量法求異面直線所成角的大小和點到面的距離,意在考查學生的數(shù)學建模以及數(shù)學運算能力.19、(1)(2)答案不唯一具體見解析【解析】

(1)利用導數(shù)的幾何意義,設切點的坐標,用不同的方式求出兩種切線方程,但兩條切線本質為同一條,從而得到方程組,再構造函數(shù)研究其最大值,進而求得;(2)對函數(shù)進行求導后得,對分三種情況進行一級討論,即,,,結合函數(shù)圖象的單調性及零點存在定理,可得函數(shù)零點情況.【詳解】解:(1)曲線在點處的切線方程為,即.令切線與曲線相切于點,則切線方程為,∴,∴,令,則,記,于是,在上單調遞增,在上單調遞減,∴,于是,.(2),①當時,恒成立,在上單調遞增,且,∴函數(shù)在上有且僅有一個零點;②當時,在R上沒有零點;③當時,令,則,即函數(shù)的增區(qū)間是,同理,減區(qū)間是,∴.?。┤?,則,在上沒有零點;ⅱ)若,則有且僅有一個零點;ⅲ)若,則.,令,則,∴當時,單調遞增,.∴又∵,∴在R上恰有兩個零點,綜上所述,當時,函數(shù)沒有零點;當或時,函數(shù)恰有一個零點;當時,恰有兩個零點.【點睛】本題考查導數(shù)的幾何意義、切線方程、零點等知識,求解切線有關問題時,一定要明確切點坐標.以導數(shù)為工具,研究函數(shù)的圖象特征及性質,從而得到函數(shù)的零點個數(shù),此時如果用到零點存在定理,必需說明在區(qū)間內單調且找到兩個端點值的函數(shù)值相乘小于0,才算完整的解法.20、(1)分布列見解析;(2)①;②,.【解析】

(1)經(jīng)過1輪投球,甲的得分的取值為,記一輪投球,甲投中為事件,乙投中為事件,相互獨立,計算概率后可得分布列;(2)由(1)得,由兩輪的得分可計算出,計算時可先計算出經(jīng)過2輪后甲的得分的分布列(的取值為),然后結合的分布列和的分布可計算,由,代入,得兩個方程,解得,從而得到數(shù)列的遞推式,變形后得是等比數(shù)列,由等比數(shù)列通項公式得,然后用累加法可求得.【詳解】(1)記一輪投球,甲命中為事件,乙命中為事件,相互獨立,由題意,,甲的得分的取值為,,,,∴的分布列為:-101(2)由(1),,同理,經(jīng)過2輪投球,甲的得分取值:記,,,則,,,,由此得甲的得分的分布列為:-2-1012∴,∵,,∴,,∴,代入得:,∴,∴數(shù)列是等比數(shù)列,公比為,首項為,∴.∴.【點睛】本題考查隨機變量的概率分布列,考查相互獨立事件同時發(fā)生的概率,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論