




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022年河南省開封市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.如圖所示,在乎板和受拉螺栓之間墊上一個(gè)墊圈,可以提高()。
A.螺栓的拉伸強(qiáng)度B.螺栓的剪切強(qiáng)度C.螺栓的擠壓強(qiáng)度D.平板的擠壓強(qiáng)度
2.設(shè)y=f(x)在[0,1]上連續(xù),且f(0)>0,f(1)<0,則下列選項(xiàng)正確的是
A.f(x)在[0,1]上可能無界
B.f(x)在[0,1]上未必有最小值
C.f(x)在[0,1]上未必有最大值
D.方程f(x)=0在(0,1)內(nèi)至少有一個(gè)實(shí)根
3.()。A.3B.2C.1D.0
4.
5.A.
B.
C.
D.
6.
7.方程x2+y2-2z=0表示的二次曲面是.
A.柱面B.球面C.旋轉(zhuǎn)拋物面D.橢球面
8.
9.設(shè)函數(shù)f(x)在[a,b]上連續(xù),在(a,b)可導(dǎo),f'(x)>0,f(a)f(b)<0,則f(x)在(a,b)內(nèi)零點(diǎn)的個(gè)數(shù)為
A.3B.2C.1D.0
10.A.
B.
C.
D.
11.
12.設(shè)y=f(x)為可導(dǎo)函數(shù),則當(dāng)△x→0時(shí),△y-dy為△x的A.A.高階無窮小B.等價(jià)無窮小C.同階但不等價(jià)無窮小D.低階無窮小
13.
14.
15.A.A.-(1/2)B.1/2C.-1D.2
16.若f(x)有連續(xù)導(dǎo)數(shù),下列等式中一定成立的是
A.d∫f(x)dx=f(x)dx
B.d∫f(x)dx=f(x)
C.d∫f(x)dx=f(x)+C
D.∫df(x)=f(x)
17.()A.A.(-∞,-3)和(3,+∞)
B.(-3,3)
C.(-∞,O)和(0,+∞)
D.(-3,0)和(0,3)
18.
19.若在(a,b)內(nèi)f'(x)<0,f''(x)<0,則f(x)在(a,b)內(nèi)()。A.單減,凸B.單增,凹C.單減,凹D.單增,凸
20.微分方程y"+y'=0的通解為
A.y=Ce-x
B.y=e-x+C
C.y=C1e-x+C2
D.y=e-x
二、填空題(20題)21.22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.34.35.36.37.
38.
39.
40.
三、計(jì)算題(20題)41.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).42.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.43.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.44.45.
46.
47.求微分方程y"-4y'+4y=e-2x的通解.
48.求微分方程的通解.49.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
50.
51.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
52.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.53.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則54.55.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
56.
57.將f(x)=e-2X展開為x的冪級(jí)數(shù).58.求曲線在點(diǎn)(1,3)處的切線方程.59.證明:60.
四、解答題(10題)61.
確定a,b使得f(x)在x=0可導(dǎo)。
62.將函數(shù)f(x)=lnx展開成(x-1)的冪級(jí)數(shù),并指出收斂區(qū)間。
63.
64.
65.設(shè)z=z(x,y)由ez-xyz=1所確定,求全微分dz。
66.求y=xex的極值及曲線的凹凸區(qū)間與拐點(diǎn).67.
68.
69.70.五、高等數(shù)學(xué)(0題)71.
在t=1處的切線方程_______。
六、解答題(0題)72.在曲線y=x2(x≥0)上某點(diǎn)A(a,a2)處作切線,使該切線與曲線及x軸所圍成的圖形的面積為1/12.試求:(1)切點(diǎn)A的坐標(biāo)((a,a2).(2)過切點(diǎn)A的切線方程.
參考答案
1.D
2.D
3.A
4.D解析:
5.D本題考查的知識(shí)點(diǎn)為牛頓一萊布尼茨公式和定積分的換元法。因此選D。
6.A
7.C本題考查了二次曲面的知識(shí)點(diǎn)。x2+y2-2z=0可化為x2/2+y2/2=z,故表示的是旋轉(zhuǎn)拋物面。
8.B
9.C本題考查了零點(diǎn)存在定理的知識(shí)點(diǎn)。由零點(diǎn)存在定理可知,f(x)在(a,b)上必有零點(diǎn),且函數(shù)是單調(diào)函數(shù),故其在(a,b)上只有一個(gè)零點(diǎn)。
10.C據(jù)右端的二次積分可得積分區(qū)域D為選項(xiàng)中顯然沒有這個(gè)結(jié)果,于是須將該區(qū)域D用另一種不等式(X-型)表示.故D又可表示為
11.A
12.A由微分的定義可知△y=dy+o(△x),因此當(dāng)△x→0時(shí)△y-dy=o(△x)為△x的高階無窮小,因此選A。
13.C
14.D解析:
15.A
16.A解析:若設(shè)F'(x)=f(x),由不定積分定義知,∫f(x)dx=F(x)+C。從而
有:d∫f(x)dx=d∫F(x)+C]=F'(x)dx=f(x)dx,故A正確。D中應(yīng)為∫df(x)=f(x)+C。
17.D
18.B解析:
19.A∵f'(x)<0,f(x)單減;f''(x)<0,f(x)凸∴f(x)在(a,b)內(nèi)單減且凸。
20.C解析:y"+y'=0,特征方程為r2+r=0,特征根為r1=0,r2=-1;方程的通解為y=C1e-x+C1,可知選C。
21.
本題考查的知識(shí)點(diǎn)為重要極限公式.
22.
23.e-6
24.[01)∪(1+∞)
25.1/61/6解析:
26.0
27.y=1y=1解析:
28.(12)
29.2
30.(-22)
31.本題考查的知識(shí)點(diǎn)為兩個(gè):參數(shù)方程形式的函數(shù)求導(dǎo)和可變上限積分求導(dǎo).
32.
33.
本題考查的知識(shí)點(diǎn)為定積分運(yùn)算.
34.
35.<0本題考查了反常積分的斂散性(比較判別法)的知識(shí)點(diǎn)。
36.
37.-1本題考查了利用導(dǎo)數(shù)定義求極限的知識(shí)點(diǎn)。
38.2/3
39.ln2
40.
本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的四則運(yùn)算.
41.
列表:
說明
42.
43.由二重積分物理意義知
44.
45.由一階線性微分方程通解公式有
46.
47.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
48.
49.
50.
51.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%52.函數(shù)的定義域?yàn)?/p>
注意
53.由等價(jià)無窮小量的定義可知
54.
55.
56.
57.58.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
59.
60.
則
61.
①f(0)=1;f-=(0)=1;+(0)=a+b;∵可導(dǎo)一定連續(xù)∴a+b=1②
∵可導(dǎo)f-"(x)=f+"(x)∴b=-4∴a=5①f(0)=1;f-=(0)=1;+(0)=a+b;∵可導(dǎo)一定連續(xù)∴a+b=1②∵可導(dǎo)f-"(x)=f+"(x)∴b=-4∴a=5①f(0)=1;f-=(0)=1;+(0)=a+b;∵可導(dǎo)一定連續(xù)∴a+b=1②∵可導(dǎo)f-"(x)=f+"(x)∴b=-4∴a=5
62.
63.
64.
65.66.y=xex
的定義域?yàn)?-∞,+∞),y'=(1+x)ex,y"=(2+x)ex.令y'=0,得駐點(diǎn)x1=-1.令y"=0,得x2=-2.
極小值點(diǎn)為x=-1,極小值為
曲線的凹區(qū)間為(-2,+∞);曲線的凸區(qū)間為(-∞,-2);拐點(diǎn)為本題考查的知識(shí)點(diǎn)為:描述函數(shù)幾何性態(tài)的綜合問題.
67.
68.
69.
70.
71.在t=1處切線的切點(diǎn)(14);斜率
∴切線方程y一4=4(x一1);即y=4x,在t=1處切線的切點(diǎn)(1,4);斜率
∴切線方程y一4=4(x一1);即y=4x72.由于y=x2,則y'=2x,曲線y=x2上過點(diǎn)A(a,a2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 摩托車安全知識(shí)講解考核試卷
- 雙十一玩家購買心理
- 寧夏回族銀川市西夏區(qū)2025年數(shù)學(xué)三下期末統(tǒng)考模擬試題含解析
- 石家莊市欒城縣2025屆三下數(shù)學(xué)期末統(tǒng)考模擬試題含解析
- 山西財(cái)經(jīng)大學(xué)華商學(xué)院《西班牙語詞匯》2023-2024學(xué)年第一學(xué)期期末試卷
- 江西省九江市彭澤縣重點(diǎn)達(dá)標(biāo)名校2024-2025學(xué)年初三下學(xué)期第二次周考物理試題含解析
- 南昌航空大學(xué)《建筑設(shè)計(jì)A2》2023-2024學(xué)年第二學(xué)期期末試卷
- 山東理工大學(xué)《微波與天線》2023-2024學(xué)年第二學(xué)期期末試卷
- 九江學(xué)院《中國民俗文化》2023-2024學(xué)年第二學(xué)期期末試卷
- 吉林省長春市榆樹市一中2025屆高三第二次質(zhì)量調(diào)查(二模)生物試題試卷含解析
- 2025年山東菏澤市光明電力服務(wù)有限責(zé)任公司招聘筆試參考題庫含答案解析
- 高中學(xué)生法制教育
- 2025-2030中國延緩衰老食品行業(yè)深度調(diào)研及市場需求與投資研究報(bào)告
- 2025年中國汽車零部件市場研究報(bào)告-2025-04-零部件
- 跨鐵路橋施工方案
- 建筑裝飾專業(yè)中級(jí)職稱理論考試題庫-建設(shè)工程專業(yè)中級(jí)職稱理論考試題庫
- 風(fēng)管制作標(biāo)準(zhǔn)
- 混凝土凝結(jié)時(shí)間電子計(jì)算表
- 西北院火力發(fā)電廠汽水管道支吊架設(shè)計(jì)手冊(cè)_圖文
- 人行天橋鋼結(jié)構(gòu)施工方案
- 年產(chǎn)76萬噸乙醛裝置工藝設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論