




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.為了貫徹落實黨中央精準(zhǔn)扶貧決策,某市將其低收入家庭的基本情況經(jīng)過統(tǒng)計繪制如圖,其中各項統(tǒng)計不重復(fù).若該市老年低收入家庭共有900戶,則下列說法錯誤的是()A.該市總有15000戶低收入家庭B.在該市從業(yè)人員中,低收入家庭共有1800戶C.在該市無業(yè)人員中,低收入家庭有4350戶D.在該市大于18歲在讀學(xué)生中,低收入家庭有800戶2.某設(shè)備使用年限x(年)與所支出的維修費用y(萬元)的統(tǒng)計數(shù)據(jù)分別為,,,,由最小二乘法得到回歸直線方程為,若計劃維修費用超過15萬元將該設(shè)備報廢,則該設(shè)備的使用年限為()A.8年 B.9年 C.10年 D.11年3.復(fù)數(shù)(i為虛數(shù)單位)的共軛復(fù)數(shù)是A.1+i B.1?i C.?1+i D.?1?i4.已知a>b>0,c>1,則下列各式成立的是()A.sina>sinb B.ca>cb C.a(chǎn)c<bc D.5.黨的十九大報告明確提出:在共享經(jīng)濟等領(lǐng)域培育增長點、形成新動能.共享經(jīng)濟是公眾將閑置資源通過社會化平臺與他人共享,進而獲得收入的經(jīng)濟現(xiàn)象.為考察共享經(jīng)濟對企業(yè)經(jīng)濟活躍度的影響,在四個不同的企業(yè)各取兩個部門進行共享經(jīng)濟對比試驗,根據(jù)四個企業(yè)得到的試驗數(shù)據(jù)畫出如下四個等高條形圖,最能體現(xiàn)共享經(jīng)濟對該部門的發(fā)展有顯著效果的圖形是()A. B.C. D.6.設(shè)函數(shù)的導(dǎo)函數(shù),且滿足,若在中,,則()A. B. C. D.7.如圖是一個幾何體的三視圖,則該幾何體的體積為()A. B. C. D.8.已知函數(shù),,若對任意的總有恒成立,記的最小值為,則最大值為()A.1 B. C. D.9.記等差數(shù)列的公差為,前項和為.若,,則()A. B. C. D.10.已知復(fù)數(shù)滿足:,則的共軛復(fù)數(shù)為()A. B. C. D.11.如圖,在△ABC中,點M是邊BC的中點,將△ABM沿著AM翻折成△AB'M,且點B'不在平面AMC內(nèi),點P是線段B'C上一點.若二面角P-AM-B'與二面角P-AM-C的平面角相等,則直線AP經(jīng)過△AB'CA.重心 B.垂心 C.內(nèi)心 D.外心12.已知函數(shù)(),若函數(shù)在上有唯一零點,則的值為()A.1 B.或0 C.1或0 D.2或0二、填空題:本題共4小題,每小題5分,共20分。13.已知圓,直線與圓交于兩點,,若,則弦的長度的最大值為___________.14.設(shè)變量,滿足約束條件,則目標(biāo)函數(shù)的最小值為______.15.在四面體中,分別是的中點.則下述結(jié)論:①四面體的體積為;②異面直線所成角的正弦值為;③四面體外接球的表面積為;④若用一個與直線垂直,且與四面體的每個面都相交的平面去截該四面體,由此得到一個多邊形截面,則該多邊形截面面積最大值為.其中正確的有_____.(填寫所有正確結(jié)論的編號)16.展開式中的系數(shù)的和大于8而小于32,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),其中.(Ⅰ)若,求函數(shù)的單調(diào)區(qū)間;(Ⅱ)設(shè).若在上恒成立,求實數(shù)的最大值.18.(12分)已知函數(shù)(),且只有一個零點.(1)求實數(shù)a的值;(2)若,且,證明:.19.(12分)在平面直角坐標(biāo)系中,已知向量,,其中.(1)求的值;(2)若,且,求的值.20.(12分)在四棱錐中,底面為直角梯形,,面.(1)在線段上是否存在點,使面,說明理由;(2)求二面角的余弦值.21.(12分)已知凸邊形的面積為1,邊長,,其內(nèi)部一點到邊的距離分別為.求證:.22.(10分)已知是等差數(shù)列,滿足,,數(shù)列滿足,,且是等比數(shù)列.(1)求數(shù)列和的通項公式;(2)求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
根據(jù)給出的統(tǒng)計圖表,對選項進行逐一判斷,即可得到正確答案.【詳解】解:由題意知,該市老年低收入家庭共有900戶,所占比例為6%,則該市總有低收入家庭900÷6%=15000(戶),A正確,該市從業(yè)人員中,低收入家庭共有15000×12%=1800(戶),B正確,該市無業(yè)人員中,低收入家庭有15000×29%%=4350(戶),C正確,該市大于18歲在讀學(xué)生中,低收入家庭有15000×4%=600(戶),D錯誤.故選:D.【點睛】本題主要考查對統(tǒng)計圖表的認識和分析,這類題要認真分析圖表的內(nèi)容,讀懂圖表反映出的信息是解題的關(guān)鍵,屬于基礎(chǔ)題.2.D【解析】
根據(jù)樣本中心點在回歸直線上,求出,求解,即可求出答案.【詳解】依題意在回歸直線上,,由,估計第年維修費用超過15萬元.故選:D.【點睛】本題考查回歸直線過樣本中心點、以及回歸方程的應(yīng)用,屬于基礎(chǔ)題.3.B【解析】分析:化簡已知復(fù)數(shù)z,由共軛復(fù)數(shù)的定義可得.詳解:化簡可得z=∴z的共軛復(fù)數(shù)為1﹣i.故選B.點睛:本題考查復(fù)數(shù)的代數(shù)形式的運算,涉及共軛復(fù)數(shù),屬基礎(chǔ)題.4.B【解析】
根據(jù)函數(shù)單調(diào)性逐項判斷即可【詳解】對A,由正弦函數(shù)的單調(diào)性知sina與sinb大小不確定,故錯誤;對B,因為y=cx為增函數(shù),且a>b,所以ca>cb,正確對C,因為y=xc為增函數(shù),故,錯誤;對D,因為在為減函數(shù),故,錯誤故選B.【點睛】本題考查了不等式的基本性質(zhì)以及指數(shù)函數(shù)的單調(diào)性,屬基礎(chǔ)題.5.D【解析】根據(jù)四個列聯(lián)表中的等高條形圖可知,圖中D中共享與不共享的企業(yè)經(jīng)濟活躍度的差異最大,它最能體現(xiàn)共享經(jīng)濟對該部門的發(fā)展有顯著效果,故選D.6.D【解析】
根據(jù)的結(jié)構(gòu)形式,設(shè),求導(dǎo),則,在上是增函數(shù),再根據(jù)在中,,得到,,利用余弦函數(shù)的單調(diào)性,得到,再利用的單調(diào)性求解.【詳解】設(shè),所以,因為當(dāng)時,,即,所以,在上是增函數(shù),在中,因為,所以,,因為,且,所以,即,所以,即故選:D【點睛】本題主要考查導(dǎo)數(shù)與函數(shù)的單調(diào)性,還考查了運算求解的能力,屬于中檔題.7.A【解析】
根據(jù)三視圖可得幾何體為直三棱柱,根據(jù)三視圖中的數(shù)據(jù)直接利用公式可求體積.【詳解】由三視圖可知幾何體為直三棱柱,直觀圖如圖所示:其中,底面為直角三角形,,,高為.∴該幾何體的體積為故選:A.【點睛】本題考查三視圖及棱柱的體積,屬于基礎(chǔ)題.8.C【解析】
對任意的總有恒成立,因為,對恒成立,可得,令,可得,結(jié)合已知,即可求得答案.【詳解】對任意的總有恒成立,對恒成立,令,可得令,得當(dāng),當(dāng),,故令,得當(dāng)時,當(dāng),當(dāng)時,故選:C.【點睛】本題主要考查了根據(jù)不等式恒成立求最值問題,解題關(guān)鍵是掌握不等式恒成立的解法和導(dǎo)數(shù)求函數(shù)單調(diào)性的解法,考查了分析能力和計算能力,屬于難題.9.C【解析】
由,和,可求得,從而求得和,再驗證選項.【詳解】因為,,所以解得,所以,所以,,,故選:C.【點睛】本題考查等差數(shù)列的通項公式、前項和公式,還考查運算求解能力,屬于中檔題.10.B【解析】
轉(zhuǎn)化,為,利用復(fù)數(shù)的除法化簡,即得解【詳解】復(fù)數(shù)滿足:所以故選:B【點睛】本題考查了復(fù)數(shù)的除法和復(fù)數(shù)的基本概念,考查了學(xué)生概念理解,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.11.A【解析】
根據(jù)題意P到兩個平面的距離相等,根據(jù)等體積法得到SΔPB'M【詳解】二面角P-AM-B'與二面角P-AM-C的平面角相等,故P到兩個平面的距離相等.故VP-AB'M=VP-ACM,即故B'P=CP,故P為CB'中點.故選:A.【點睛】本題考查了二面角,等體積法,意在考查學(xué)生的計算能力和空間想象能力.12.C【解析】
求出函數(shù)的導(dǎo)函數(shù),當(dāng)時,只需,即,令,利用導(dǎo)數(shù)求其單調(diào)區(qū)間,即可求出參數(shù)的值,當(dāng)時,根據(jù)函數(shù)的單調(diào)性及零點存在性定理可判斷;【詳解】解:∵(),∴,∴當(dāng)時,由得,則在上單調(diào)遞減,在上單調(diào)遞增,所以是極小值,∴只需,即.令,則,∴函數(shù)在上單調(diào)遞增.∵,∴;當(dāng)時,,函數(shù)在上單調(diào)遞減,∵,,函數(shù)在上有且只有一個零點,∴的值是1或0.故選:C【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的零點問題,零點存在性定理的應(yīng)用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
取的中點為M,由可得,可得M在上,當(dāng)最小時,弦的長才最大.【詳解】設(shè)為的中點,,即,即,,.設(shè),則,得.所以,.故答案為:【點睛】本題考查直線與圓的位置關(guān)系的綜合應(yīng)用,考查學(xué)生的邏輯推理、數(shù)形結(jié)合的思想,是一道有一定難度的題.14.-8【解析】
通過約束條件,畫出可行域,將問題轉(zhuǎn)化為直線在軸截距最大的問題,通過圖像解決.【詳解】由題意可得可行域如下圖所示:令,則即為在軸截距的最大值由圖可知:當(dāng)過時,在軸截距最大本題正確結(jié)果:【點睛】本題考查線性規(guī)劃中的型最值的求解問題,關(guān)鍵在于將所求最值轉(zhuǎn)化為在軸截距的問題.15.①③④.【解析】
補圖成長方體,在長方體中利用割補法求四面體的體積,和外接球的表面積,以及異面直線的夾角,作出截面即可計算截面面積的最值.【詳解】根據(jù)四面體特征,可以補圖成長方體設(shè)其邊長為,,解得補成長,寬,高分別為的長方體,在長方體中:①四面體的體積為,故正確②異面直線所成角的正弦值等價于邊長為的矩形的對角線夾角正弦值,可得正弦值為,故錯;③四面體外接球就是長方體的外接球,半徑,其表面積為,故正確;④由于,故截面為平行四邊形,可得,設(shè)異面直線與所成的角為,則,算得,.故正確.故答案為:①③④.【點睛】此題考查根據(jù)幾何體求體積,外接球的表面積,異面直線夾角和截面面積最值,關(guān)鍵在于熟練掌握點線面位置關(guān)系的處理方法,補圖法作為解決體積和外接球問題的常用方法,平常需要積累常見幾何體的補圖方法.16.4【解析】
由題意可得項的系數(shù)與二項式系數(shù)是相等的,利用題意,得出不等式組,求得結(jié)果.【詳解】觀察式子可知,,故答案為:4.【點睛】該題考查的是有關(guān)二項式定理的問題,涉及到的知識點有展開式中項的系數(shù)和,屬于基礎(chǔ)題目.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(Ⅱ).【解析】
(Ⅰ)求出函數(shù)的定義域以及導(dǎo)數(shù),利用導(dǎo)數(shù)可求出該函數(shù)的單調(diào)遞增區(qū)間和單調(diào)遞減區(qū)間;(Ⅱ)由題意可知在上恒成立,分和兩種情況討論,在時,構(gòu)造函數(shù),利用導(dǎo)數(shù)證明出在上恒成立;在時,經(jīng)過分析得出,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)證明出在上恒成立,由此得出,進而可得出實數(shù)的最大值.【詳解】(Ⅰ)函數(shù)的定義域為.當(dāng)時,.令,解得(舍去),.當(dāng)時,,所以,函數(shù)在上單調(diào)遞減;當(dāng)時,,所以,函數(shù)在上單調(diào)遞增.因此,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(Ⅱ)由題意,可知在上恒成立.(i)若,,,,構(gòu)造函數(shù),,則,,,.又,在上恒成立.所以,函數(shù)在上單調(diào)遞增,當(dāng)時,在上恒成立.(ii)若,構(gòu)造函數(shù),.,所以,函數(shù)在上單調(diào)遞增.恒成立,即,,即.由題意,知在上恒成立.在上恒成立.由(Ⅰ)可知,又,當(dāng),即時,函數(shù)在上單調(diào)遞減,,不合題意,,即.此時構(gòu)造函數(shù),.,,,,恒成立,所以,函數(shù)在上單調(diào)遞增,恒成立.綜上,實數(shù)的最大值為【點睛】本題考查利用導(dǎo)數(shù)求解函數(shù)的單調(diào)區(qū)間,同時也考查了利用導(dǎo)數(shù)研究函數(shù)不等式恒成立問題,本題的難點在于不斷構(gòu)造新函數(shù)來求解,考查推理能力與運算求解能力,屬于難題.18.(1)(2)證明見解析【解析】
(1)求導(dǎo)可得在上,在上,所以函數(shù)在時,取最小值,由函數(shù)只有一個零點,觀察可知則有,即可求得結(jié)果.(2)由(1)可知為最小值,則構(gòu)造函數(shù)(),求導(dǎo)借助基本不等式可判斷為減函數(shù),即可得,即則有,由已知可得,由,可知,因為時,為增函數(shù),即可得證得結(jié)論.【詳解】(1)().因為,所以,令得,,且,,在上;在上;所以函數(shù)在時,取最小值,當(dāng)最小值為0時,函數(shù)只有一個零點,易得,所以,解得.(2)由(1)得,函數(shù),設(shè)(),則,設(shè)(),則,,所以為減函數(shù),所以,即,所以,即,又,所以,又當(dāng)時,為增函數(shù),所以,即.【點睛】本題考查借助導(dǎo)數(shù)研究函數(shù)的單調(diào)性及最值,考查學(xué)生分析問題的能力,及邏輯推理能力,難度困難.19.(1)(2).【解析】
(1)根據(jù),由向量,的坐標(biāo)直接計算即得;(2)先求出,再根據(jù)向量平行的坐標(biāo)關(guān)系解得.【詳解】(1)由題,向量,,則.(2),.,,整理得,化簡得,即,,,,即.【點睛】本題考查平面向量的坐標(biāo)運算,以及向量平行,是常考題型.20.(1)存在;詳見解析(2)【解析】
(1)利用面面平行的性質(zhì)定理可得,為上靠近點的三等分點,中點,證明平面平面即得;(2)過作交于,可得兩兩垂直,以分別為軸建立空間直角坐標(biāo)系,求出長,寫出各點坐標(biāo),用向量法求二面角.【詳解】解:(1)當(dāng)為上靠近點的三等分點時,滿足面.證明如下,取中點,連結(jié).即易得所以面面,即面.(2)過作交于面,兩兩垂直,以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 草原草原生態(tài)補償金分配與使用考核試卷
- 林業(yè)防火機械裝備與應(yīng)用考核試卷
- 探秘六年級模板
- 四年級學(xué)生成長解析
- 南京中醫(yī)藥大學(xué)《JAVA面向?qū)ο缶幊獭?023-2024學(xué)年第二學(xué)期期末試卷
- 南京旅游職業(yè)學(xué)院《俄羅斯歷史》2023-2024學(xué)年第二學(xué)期期末試卷
- 江蘇省泰興市濟川中學(xué)2024-2025學(xué)年初三下學(xué)期5月練習(xí)數(shù)學(xué)試題含解析
- 吉林省長春市三中2025屆4月高三學(xué)業(yè)水平考試生物試題試卷含解析
- 山東省諸城市龍源學(xué)校2024-2025學(xué)年中考化學(xué)試題沖刺試卷含解析
- 洛陽理工學(xué)院《生物材料研究的基礎(chǔ)、前沿與應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷
- 小學(xué)奧數(shù):乘法原理之染色法.專項練習(xí)及答案解析
- 西藏林芝地區(qū)地質(zhì)災(zāi)害防治規(guī)劃
- 入團志愿書樣本(空白)
- 老年人燙傷的預(yù)防與護理課件
- 部編版小學(xué)道德與法治六年級下冊《各不相同的生活環(huán)境》課件
- 國內(nèi)外經(jīng)濟形勢和宏觀經(jīng)濟政策展望課件
- 國家文化安全
- 我的家鄉(xiāng)臨海課品課件
- 基礎(chǔ)會計教材電子版
- 臨床科室醫(yī)院感染風(fēng)險評估檢查表
- 人文與社會五年級上教案知識講解
評論
0/150
提交評論