




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.《九章算術》勾股章有一“引葭赴岸”問題“今有餅池徑丈,葭生其中,出水兩尺,引葭赴岸,適與岸齊,問水深,葭各幾何?”,其意思是:有一個直徑為一丈的圓柱形水池,池中心生有一顆類似蘆葦?shù)闹参?,露出水面兩尺,若把它引向岸邊,正好與岸邊齊,問水有多深,該植物有多高?其中一丈等于十尺,如圖若從該葭上隨機取一點,則該點取自水下的概率為()A. B. C. D.2.函數(shù)在的圖像大致為A. B. C. D.3.向量,,且,則()A. B. C. D.4.盒中裝有形狀、大小完全相同的5張“刮刮卡”,其中只有2張“刮刮卡”有獎,現(xiàn)甲從盒中隨機取出2張,則至少有一張有獎的概率為()A. B. C. D.5.下列函數(shù)中,既是偶函數(shù)又在區(qū)間上單調遞增的是()A. B. C. D.6.己知拋物線的焦點為,準線為,點分別在拋物線上,且,直線交于點,,垂足為,若的面積為,則到的距離為()A. B. C.8 D.67.下列四個圖象可能是函數(shù)圖象的是()A. B. C. D.8.某幾何體的三視圖如圖所示,其俯視圖是由一個半圓與其直徑組成的圖形,則此幾何體的體積是()A. B. C. D.9.若,,則的值為()A. B. C. D.10.2019年10月1日,中華人民共和國成立70周年,舉國同慶.將2,0,1,9,10這5個數(shù)字按照任意次序排成一行,拼成一個6位數(shù),則產生的不同的6位數(shù)的個數(shù)為A.96 B.84 C.120 D.36011.如圖所示的程序框圖,若輸入,,則輸出的結果是()A. B. C. D.12.下列函數(shù)中,在定義域上單調遞增,且值域為的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,,則__________.14.圓關于直線的對稱圓的方程為_____.15.已知四棱錐,底面四邊形為正方形,,四棱錐的體積為,在該四棱錐內放置一球,則球體積的最大值為_________.16.已知函數(shù),若函數(shù)恰有4個零點,則實數(shù)的取值范圍是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在銳角中,角A,B,C所對的邊分別為a,b,c.已知.(1)求的值;(2)當,且時,求的面積.18.(12分)已知分別是橢圓的左焦點和右焦點,橢圓的離心率為是橢圓上兩點,點滿足.(1)求的方程;(2)若點在圓上,點為坐標原點,求的取值范圍.19.(12分)已知是遞增的等比數(shù)列,,且、、成等差數(shù)列.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設,,求數(shù)列的前項和.20.(12分)已知橢圓,過的直線與橢圓相交于兩點,且與軸相交于點.(1)若,求直線的方程;(2)設關于軸的對稱點為,證明:直線過軸上的定點.21.(12分)已知橢圓:的離心率為,左、右頂點分別為、,過左焦點的直線交橢圓于、兩點(異于、兩點),當直線垂直于軸時,四邊形的面積為1.(1)求橢圓的方程;(2)設直線、的交點為;試問的橫坐標是否為定值?若是,求出定值;若不是,請說明理由.22.(10分)已知函數(shù).若在定義域內存在,使得成立,則稱為函數(shù)的局部對稱點.(1)若a,且a≠0,證明:函數(shù)有局部對稱點;(2)若函數(shù)在定義域內有局部對稱點,求實數(shù)c的取值范圍;(3)若函數(shù)在R上有局部對稱點,求實數(shù)m的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由題意知:,,設,則,在中,列勾股方程可解得,然后由得出答案.【詳解】解:由題意知:,,設,則在中,列勾股方程得:,解得所以從該葭上隨機取一點,則該點取自水下的概率為故選C.【點睛】本題考查了幾何概型中的長度型,屬于基礎題.2、B【解析】
由分子、分母的奇偶性,易于確定函數(shù)為奇函數(shù),由的近似值即可得出結果.【詳解】設,則,所以是奇函數(shù),圖象關于原點成中心對稱,排除選項C.又排除選項D;,排除選項A,故選B.【點睛】本題通過判斷函數(shù)的奇偶性,縮小考察范圍,通過計算特殊函數(shù)值,最后做出選擇.本題較易,注重了基礎知識、基本計算能力的考查.3、D【解析】
根據(jù)向量平行的坐標運算以及誘導公式,即可得出答案.【詳解】故選:D【點睛】本題主要考查了由向量平行求參數(shù)以及誘導公式的應用,屬于中檔題.4、C【解析】
先計算出總的基本事件的個數(shù),再計算出兩張都沒獲獎的個數(shù),根據(jù)古典概型的概率,求出兩張都沒有獎的概率,由對立事件的概率關系,即可求解.【詳解】從5張“刮刮卡”中隨機取出2張,共有種情況,2張均沒有獎的情況有(種),故所求概率為.故選:C.【點睛】本題考查古典概型的概率、對立事件的概率關系,意在考查數(shù)學建模、數(shù)學計算能力,屬于基礎題.5、C【解析】
結合基本初等函數(shù)的奇偶性及單調性,結合各選項進行判斷即可.【詳解】A:為非奇非偶函數(shù),不符合題意;B:在上不單調,不符合題意;C:為偶函數(shù),且在上單調遞增,符合題意;D:為非奇非偶函數(shù),不符合題意.故選:C.【點睛】本小題主要考查函數(shù)的單調性和奇偶性,屬于基礎題.6、D【解析】
作,垂足為,過點N作,垂足為G,設,則,結合圖形可得,,從而可求出,進而可求得,,由的面積即可求出,再結合為線段的中點,即可求出到的距離.【詳解】如圖所示,作,垂足為,設,由,得,則,.過點N作,垂足為G,則,,所以在中,,,所以,所以,在中,,所以,所以,,所以.解得,因為,所以為線段的中點,所以F到l的距離為.故選:D【點睛】本題主要考查拋物線的幾何性質及平面幾何的有關知識,屬于中檔題.7、C【解析】
首先求出函數(shù)的定義域,其函數(shù)圖象可由的圖象沿軸向左平移1個單位而得到,因為為奇函數(shù),即可得到函數(shù)圖象關于對稱,即可排除A、D,再根據(jù)時函數(shù)值,排除B,即可得解.【詳解】∵的定義域為,其圖象可由的圖象沿軸向左平移1個單位而得到,∵為奇函數(shù),圖象關于原點對稱,∴的圖象關于點成中心對稱.可排除A、D項.當時,,∴B項不正確.故選:C【點睛】本題考查函數(shù)的性質與識圖能力,一般根據(jù)四個選擇項來判斷對應的函數(shù)性質,即可排除三個不符的選項,屬于中檔題.8、C【解析】由三視圖可知,該幾何體是下部是半徑為2,高為1的圓柱的一半,上部為底面半徑為2,高為2的圓錐的一半,所以,半圓柱的體積為,上部半圓錐的體積為,所以該幾何體的體積為,故應選.9、A【解析】
取,得到,取,則,計算得到答案.【詳解】取,得到;取,則.故.故選:.【點睛】本題考查了二項式定理的應用,取和是解題的關鍵.10、B【解析】
2,0,1,9,10按照任意次序排成一行,得所有不以0開頭的排列數(shù)共個,其中含有2個10的排列數(shù)共個,所以產生的不同的6位數(shù)的個數(shù)為.故選B.11、B【解析】
列舉出循環(huán)的每一步,可得出輸出結果.【詳解】,,不成立,,;不成立,,;不成立,,;成立,輸出的值為.故選:B.【點睛】本題考查利用程序框圖計算輸出結果,一般要將算法的每一步列舉出來,考查計算能力,屬于基礎題.12、B【解析】
分別作出各個選項中的函數(shù)的圖象,根據(jù)圖象觀察可得結果.【詳解】對于,圖象如下圖所示:則函數(shù)在定義域上不單調,錯誤;對于,的圖象如下圖所示:則在定義域上單調遞增,且值域為,正確;對于,的圖象如下圖所示:則函數(shù)單調遞增,但值域為,錯誤;對于,的圖象如下圖所示:則函數(shù)在定義域上不單調,錯誤.故選:.【點睛】本題考查函數(shù)單調性和值域的判斷問題,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
直接根據(jù)集合和集合求交集即可.【詳解】解:,,所以.故答案為:【點睛】本題考查集合的交集運算,是基礎題.14、【解析】
求出圓心關于直線的對稱點,即可得解.【詳解】的圓心為,關于對稱點設為,則有:,解得,所以對稱后的圓心為,故所求圓的方程為.故答案為:【點睛】此題考查求圓關于直線的對稱圓方程,關鍵在于準確求出圓心關于直線的對稱點坐標.15、【解析】
由題知,該四棱錐為正四棱錐,作出該正四棱錐的高和斜高,連接,則球心O必在的邊上,設,由球與四棱錐的內切關系可知,設,用和表示四棱錐的體積,解得和的關系,進而表示出內切球的半徑,并求出半徑的最大值,進而求出球的體積的最大值.【詳解】設,,由球O內切于四棱錐可知,,,則,球O的半徑,,,,當且僅當時,等號成立,此時.故答案為:.【點睛】本題考查了棱錐的體積問題,內切球問題,考查空間想象能力,屬于較難的填空壓軸題.16、【解析】
函數(shù)恰有4個零點,等價于函數(shù)與函數(shù)的圖象有四個不同的交點,畫出函數(shù)圖象,利用數(shù)形結合思想進行求解即可.【詳解】函數(shù)恰有4個零點,等價于函數(shù)與函數(shù)的圖象有四個不同的交點,畫出函數(shù)圖象如下圖所示:由圖象可知:實數(shù)的取值范圍是.故答案為:【點睛】本題考查了已知函數(shù)零點個數(shù)求參數(shù)取值范圍問題,考查了數(shù)形結合思想和轉化思想.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)利用二倍角公式求解即可,注意隱含條件.(2)利用(1)中的結論,結合正弦定理和同角三角函數(shù)的關系易得的值,又由求出的值,最后由正弦定理求出的值,根據(jù)三角形的面積公式即可計算得出.【詳解】(1)由已知可得,所以,因為在銳角中,,所以(2)因為,所以,因為是銳角三角形,所以,所以.由正弦定理可得:,所以,所以【點睛】此類問題是高考的常考題型,主要考查了正弦定理、三角函數(shù)以及三角恒等變換等知識,同時考查了學生的基本運算能力和利用三角公式進行恒等變換的技能,屬于中檔題.18、(1);(2).【解析】
(1)根據(jù)焦點坐標和離心率,結合橢圓中的關系,即可求得的值,進而得橢圓的標準方程.(2)設出直線的方程為,由題意可知為中點.聯(lián)立直線與橢圓方程,由韋達定理表示出,由判別式可得;由平面向量的線性運算及數(shù)量積定義,化簡可得,代入弦長公式化簡;由中點坐標公式可得點的坐標,代入圓的方程,化簡可得,代入數(shù)量積公式并化簡,由換元法令,代入可得,再令及,結合函數(shù)單調性即可確定的取值范圍,即確定的取值范圍,因而可得的取值范圍.【詳解】(1)分別是橢圓的左焦點和右焦點,則,橢圓的離心率為則解得,所以,所以的方程為.(2)設直線的方程為,點滿足,則為中點,點在圓上,設,聯(lián)立直線與橢圓方程,化簡可得,所以則,化簡可得,而由弦長公式代入可得為中點,則點在圓上,代入化簡可得,所以令,則,,令,則令,則,所以,因為在內單調遞增,所以,即所以【點睛】本題考查了橢圓的標準方程求法,直線與橢圓的位置關系綜合應用,由韋達定理研究參數(shù)間的關系,平面向量的線性運算與數(shù)量積運算,弦長公式的應用及換元法在求取值范圍問題中的綜合應用,計算量大,屬于難題.19、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)設等比數(shù)列的公比為,根據(jù)題中條件求出的值,結合等比數(shù)列的通項公式可得出數(shù)列的通項公式;(Ⅱ)求得,然后利用裂項相消法可求得.【詳解】(Ⅰ)設數(shù)列的公比為,由題意及,知.、、成等差數(shù)列成等差數(shù)列,,,即,解得或(舍去),.數(shù)列的通項公式為;(Ⅱ),.【點睛】本題考查等比數(shù)列通項的求解,同時也考查了裂項求和法,考查計算能力,屬于基礎題.20、(1)或;(2)見解析【解析】
(1)由已知條件利用點斜式設出直線的方程,則可表示出點的坐標,再由的關系表示出點的坐標,而點在橢圓上,將其坐標代入橢圓方程中可求出直線的斜率;(2)設出兩點的坐標,則點的坐標可以表示出,然后直線的方程與橢圓方程聯(lián)立成方程,消元后得到關于的一元二次方程,再利用根與系數(shù)的關系,再結合直線的方程,化簡可得結果.【詳解】(1)由條件可知直線的斜率存在,則可設直線的方程為,則,由,有,所以,由在橢圓上,則,解得,此時在橢圓內部,所以滿足直線與橢圓相交,故所求直線方程為或.(也可聯(lián)立直線與橢圓方程,由驗證)(2)設,則,直線的方程為.由得,由,解得,,當時,,故直線恒過定點.【點睛】此題考查的是直線與橢圓的位置關系中的過定點問題,計算過程較復雜,屬于難題.21、(1)(2)是為定值,的橫坐標為定值【解析】
(1)根據(jù)“直線垂直于軸時,四邊形的面積為1”列方程,由此求得,結合橢圓離心率以及,求得,由此求得橢圓方程.(2)設出直線的方程,聯(lián)立直線的方程和橢圓方程,化簡后寫出根與系數(shù)關系.求得直線的方程,并求得兩直線交點的橫坐標,結合根與系數(shù)關系進行化簡,求得的橫坐標為定值.【詳解】(1)依題意可知,解得,即;而,即,結合解得,,因此橢圓方程為(2)由題意得,左焦點,設直線的方程為:,,.由消去并整理得,∴,.直線的方程為:,直線的方程為:.聯(lián)系方程,解得,又因為.所以.所以的橫坐標為定值.【點睛】本小題主要考查根據(jù)橢圓離心率求橢圓方程,考查直線和橢圓的位置關系,考查直線和直線交點坐標的求法,考查運算求解能力,屬于中檔題.22、(1)見解析(2)(3)【解析】
(1)若函數(shù)有局部對稱點,則,即有解,即可求證;(2)由題可得在內有解,即方程在區(qū)間上有解,則,設,利用導函數(shù)求得的范圍,即可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣告戶外安全協(xié)議書合同
- 2025年工業(yè)互聯(lián)網平臺網絡安全態(tài)勢感知技術在智能園區(qū)建設應用案例分析報告
- gsp中養(yǎng)護培訓試題及答案
- 合同制房產協(xié)議書范文
- 2025年實體書店在無人零售背景下的轉型策略研究報告
- 2025年電商綠色物流行業(yè)綠色物流綠色物流行業(yè)綠色物流綠色物流綠色物流綠色倉儲報告
- 新能源汽車制造產業(yè)鏈布局與核心技術合作戰(zhàn)略研究報告
- 2025年老年醫(yī)療護理服務市場規(guī)模預測:老年護理服務產業(yè)鏈上下游協(xié)同發(fā)展報告
- 城市更新視角下2025年歷史文化街區(qū)保護與開發(fā)的生態(tài)修復策略研究報告
- 基于2025年技術趨勢的工業(yè)互聯(lián)網微服務架構性能評估報告
- 2024年玉門市市屬事業(yè)單位考試真題
- 2025云南中考:語文必考知識點
- 2025小米SU7事件高速爆燃事故輿情復盤
- 玻璃體積血試題及答案
- 會議系統(tǒng)維保服務方案投標文件(技術方案)
- 遼寧點石聯(lián)考2025屆高三5月份聯(lián)合考試-政治試卷+答案
- 《護理操作規(guī)范》課件
- 軍隊文職-新聞專業(yè) (軍隊文職)真題庫-5
- 2025年下半年保山市消防救援支隊防火監(jiān)督科招聘消防文員4名易考易錯模擬試題(共500題)試卷后附參考答案
- 2025至2030中國寺廟經濟市場深度調研與未來前景發(fā)展研究報告
- 移動護理管理平臺建設方案
評論
0/150
提交評論