




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
基于區(qū)域分割的零件三維模型檢索方法Chapter1:Introduction
-Backgroundandmotivation
-Researchobjectivesandsignificance
-Researchquestions
-Scopeandlimitations
-Organizationofthethesis
Chapter2:LiteratureReview
-Overviewof3Dmodelretrieval
-Region-basedmethodsfor3Dmodelretrieval
-Existingtechniquesforregionsegmentationin3Dmodels
-Evaluationmetricsfor3Dmodelretrieval
-Summaryandanalysisofliterature
Chapter3:Methodology
-Overviewoftheproposedmethod
-Stepsinvolvedintheproposedmethod
-Descriptionofthedatasetusedforevaluation
-Implementationdetails
-Evaluationmetricsusedinthestudy
Chapter4:ResultsandDiscussion
-Resultsoftheproposedmethod
-Comparisonwithexistingmethods
-Analysisoftheresults
-Limitationsandfuturedirections
Chapter5:ConclusionandFutureWork
-Summaryoftheresearch
-Contributionsandachievements
-Recommendationsforfutureresearch
-Concludingremarks
References
-ListofreferencescitedinthethesisChapter1:Introduction
3Dmodelinghasbecomeanessentialpartofvariousindustries,rangingfromarchitectureandengineeringtovideogamedesignandmovie-making.Withtheever-increasingsizeof3Dmodelrepositories,thereisagrowingneedforefficientandaccurateretrievalmethods.3Dmodelretrievalinvolvesperformingacontent-basedsearchfor3Dmodelsthataresimilartoagivenquerymodel.Theaccuracyandefficiencyoftheretrievalprocessdependonthesegmentationanddescriptionofthequerymodelandthetargetmodels.
Thisthesisaimstoproposearegion-based3Dmodelretrievalmethod.Theproposedmethodinvolvessegmentingthe3Dmodelsintoregionsandretrievingsimilarmodelsbasedontheseregions.Theregion-basedapproachhasshownsignificantadvantagesovertraditionalglobalfeature-basedmethodsinvariousapplications.Thesegmentationswillbegeneratedwhileconsideringthesymmetriesandgeometriesofthe3Dmodels.
Thisresearchissignificantbecauseitcontributestotheongoingeffortsinthefieldof3Dmodelretrieval.Theproposedmethodaimstoenhancetheaccuracyandefficiencyoftheretrievalprocess,allowingformoreeffectivesearcheswithinlarge3Dmodelrepositories.Additionally,theproposedmethodprovidesamoredetailedanalysisofthesegmentedregionswithinthe3Dmodels,whichcanhavevariousapplicationsinfieldssuchasvirtualandaugmentedrealityexperiences.
Thefollowingresearchquestionswillbeaddressedbythisthesis:
1.Cantheproposedregion-basedmethodaccuratelyretrievesimilar3Dmodelsascomparedtoexistingglobalfeature-basedmethods?
2.Whatistheimpactofconsideringthesymmetriesandgeometriesof3Dmodelsontheretrievalaccuracyoftheproposedmethod?
3.Howcanthesegmentedregionsof3Dmodelsbefurtherutilizedinvariousapplications?
Thescopeofthisthesisislimitedtotheproposedregion-basedmethodandthedatasetusedforevaluation.Theevaluationwillbedoneonastandarddatasetusedinthefieldof3Dmodelretrieval,thePrincetonShapeBenchmark(PSB)dataset.Thelimitationsoftheproposedmethodincludethesensitivitytonoiseandtherequirementforthetarget3Dmodelstohaveasimilargeometrywiththequerymodel.
Thethesisisorganizedasfollows:Chapter2providesanoverviewoftheexistingliteratureon3Dmodelretrieval,region-basedmethods,segmentationtechniques,andevaluationmetrics.Chapter3describestheproposedmethod,thedatasetusedforevaluation,andtheimplementationdetails.Chapter4presentstheresultsandanalysisoftheproposedmethodascomparedtoexistingmethods.Chapter5concludesthethesisandprovidesrecommendationsforfutureresearch.Chapter2:LiteratureReview
Thischapterpresentsanoverviewofexistingliteraturerelatedto3Dmodelretrieval,region-basedmethods,segmentationtechniques,andevaluationmetrics.Thegoalistoprovideacomprehensiveunderstandingofthestate-of-the-artresearchineachoftheseareas,toidentifythegapsinthecurrentresearch,andtoinformtheproposedmethodandevaluationmetricsusedinthisthesis.
2.13DModelRetrieval
3Dmodelretrievalisaprocessthatinvolvesretrieving3Dmodelsthataresimilartoagivenquerymodel.Thesimilaritybetween3Dmodelsisoftenmeasuredbasedonvisualfeaturessuchascolor,texture,shape,andgeometry.Globalfeature-basedmethodsarewidelyusedfor3Dmodelretrieval.Thesemethodsoftenextractfeaturesfromtheentire3DmodelandcomparethemusingdistancemetricssuchasEuclideandistanceorcosinesimilarity.However,globalfeaturesdonotalwayscapturethedetailsofthe3Dmodelandcanleadtoinaccurateretrievalresults.
Region-basedapproacheshavebeenproposedtoovercomethelimitationsofglobalfeatures.Theseapproachespartitionthe3Dmodelsintoregionsandextractfeaturesfromeachregion.Thesimilaritybetweentwo3Dmodelsisthencomputedbasedonthesimilaritiesbetweenthecorrespondingregions.Region-basedapproacheshaveshownsignificantadvantagesoverglobalfeature-basedmethodsinvariousapplications,especiallywhenthe3Dmodelshavecomplexstructuresandshapes.
2.2Region-BasedMethods
Region-basedmethodsinvolvesegmenting3Dmodelsintoregionsandextractingfeaturesfromeachregion.Thesegmentedregionsareoftenbasedonmanuallydefinedorautomaticallygeneratedregionssuchasobjectparts,semanticregions,orgeometricregions.Theextractedfeaturescanbeglobalorlocalfeatures.Thesimilaritybetweentwo3Dmodelsisthencomputedbasedonthesimilaritiesbetweenthecorrespondingregions.
Severalapproacheshavebeenproposedforregion-based3Dmodelretrieval.Forexample,Mposedamethodthatgeneratesregionsbasedonthesymmetriesof3Dmodelsandextractsfeaturesbasedonthecovariancematrixofthepointswithineachregion.Zposedamethodthatgeneratessemanticregionsbasedontheoutputofaconvolutionalneuralnetwork(CNN)andextractsfeaturesbasedonthehistogramsoforientationgradientswithineachregion.Theseapproacheshaveshownpromisingresultsinimprovingtheaccuracyof3Dmodelretrievalcomparedtoglobalfeature-basedmethods.
2.3SegmentationTechniques
Segmentationtechniquesplayacrucialroleinregion-based3Dmodelretrieval.Thegoalofsegmentationistopartitionthe3Dmodelsintomeaningfulregionsbasedongeometric,semantic,orotherattributes.Manuallydefinedregionsareoftenusedinregion-basedmethods,whereanexpertdefinestheregionsbasedontheirknowledgeofthegeometryorsemanticsofthe3Dmodels.However,manualsegmentationcanbetime-consumingandsubjective.
Automaticsegmentationtechniqueshavebeendevelopedtoovercomethelimitationsofmanualsegmentation.Thesetechniquesoftenuseclustering,graphpartitioning,orCNNstogenerateregions.Forexample,Kposedaclustering-basedmethodthatgeneratesregionsbasedonthecurvaturehistogramofthe3Dmodel.Lposedagraphpartitioningmethodthatgeneratesregionsbasedontheoptimalsymmetricplanesofthe3Dmodel.Thesetechniqueshaveshownpromisingresultsingeneratingmeaningfulandaccuratesegmentsfor3Dmodels.
2.4EvaluationMetrics
Evaluationmetricsareessentialforassessingtheperformanceofregion-based3Dmodelretrievalmethods.Thefourcommonlyusedevaluationmetricsareprecision,recall,F1-score,andmeanaverageprecision(MAP).Precisionmeasuresthefractionofretrievedsimilar3Dmodelsthatarerelevant,whilerecallmeasuresthefractionofrelevantsimilar3Dmodelsthatareretrieved.F1-scoreistheharmonicmeanofprecisionandrecall,providingabalancedmeasureofboth.MAPmeasurestheaverageprecisionoverallqueriesandisoftenusedtoevaluatetheoverallperformanceofthemethod.Thesemetricsprovidequantitativemeasuresoftheaccuracyandefficiencyoftheproposedmethod.
Insummary,region-basedmethodshaveshownsignificantadvantagesoverglobalfeature-basedmethodsinimprovingtheaccuracyof3Dmodelretrieval.Automaticsegmentationtechniqueshavebeendevelopedtogeneratemeaningfulandaccuratesegmentsfor3Dmodels.Evaluationmetricsareessentialforassessingtheperformanceofregion-based3Dmodelretrievalmethods.Theproposedmethodandevaluationmetricsinthisthesisbuildontheseexistingapproachesandaddressthegapsinthecurrentresearch.Chapter3:ProposedMethodology
Thischapterpresentstheproposedmethodologyforregion-based3Dmodelretrieval.Theproposedmethodaimstoovercomethelimitationsofexistingmethodsbycombiningautomaticsegmentationtechniquesandlocalfeatureextraction.
3.1Overview
Theproposedmethodconsistsofthreemainstages:1)automaticsegmentation,2)localfeatureextraction,and3)similaritycomputation.Inthefirststage,the3Dmodeldatasetissegmentedintomeaningfulregionsusinganautomaticsegmentationtechnique.Inthesecondstage,localfeaturesareextractedfromeachsegmentedregionusingalocalfeaturedescriptor.Finally,inthethirdstage,thesimilaritybetweenthequerymodelandthedatabasemodelsiscomputedbasedonthesimilaritiesbetweenthecorrespondingsegmentedregionsusinganadapteddistancemetric.
Thefollowingsectionsdescribeeachstageoftheproposedmethodinmoredetail.
3.2AutomaticSegmentation
Automaticsegmentationtechniquesareusedtopartitionthe3Dmodeldatasetintomeaningfulregions.Inthisthesis,weproposetouseaclustering-basedsegmentationtechniquethatgeneratesregionsbasedonthecurvaturehistogramofthe3Dmodels.Thecurvaturehistogrammeasuresthecurvaturesatdifferentpointsonthesurfaceofthe3Dmodelandisaneffectivemeasureofthelocalgeometryofthe3Dmodel.Theclusteringalgorithmusedinthesegmentationstagegeneratesclustersofpointsthathavesimilarcurvaturehistograms,resultinginclustersthatcorrespondtomeaningfulregionsofthe3Dmodel.
3.3LocalFeatureExtraction
Localfeatureextractionisusedtodescribethelocalgeometryandappearanceofeachsegmentedregion.Inthisthesis,weproposetousethelocalsurfacepatchdescriptor(LSPD)asthelocalfeaturedescriptor.LSPDextractsfeaturesfrompatchesonthesurfaceofthe3Dmodelwithineachsegmentedregion.Thefeaturesaregeneratedbasedonpatch-basedshapelayoutdescriptors,shapecontextdescriptors,andcolordescriptors.LSPDhasbeenshowntobeeffectiveincapturingthelocalgeometryandappearanceof3Dmodels,makingitasuitablechoiceforlocalfeatureextractionintheproposedmethod.
3.4SimilarityComputation
Thesimilaritybetweenthequerymodelandthedatabasemodelsiscomputedbasedonthesimilaritiesbetweenthecorrespondingsegmentedregionsusinganadapteddistancemetric.Inthisthesis,weproposetouseamodifiedversionofthechi-squareddistancemetric.Themodifiedchi-squareddistancemetrictakesintoaccounttheweightsofthedifferentfeaturecomponentsandthedistancesbetweencorrespondingclusters.TheweightsofthedifferentfeaturecomponentsarelearnedusingaLinearDiscriminantAnalysis(LDA)classifier,whichistrainedtomaximizethediscriminativepowerofthefeatures.
3.5EvaluationMetrics
Precision,recall,F1-score,andmeanaverageprecision(MAP)areusedasevaluationmetricsfortheproposedmethod.Theperformanceoftheproposedmethodiscomparedtothestate-of-the-artglobalfeature-basedandregion-based3Dmodelretrievalmethodsusingacommondatasetandevaluationprotocol.
Insummary,theproposedmethodologyforregion-based3Dmodelretrievalcombinesautomaticsegmentationtechniquesandlocalfeatureextractiontoovercomethelimitationsofexistingmethods.Theproposedmethodaimstocapturethelocalgeometryandappearanceof3DmodelsusingLSPDandcomputethesimilaritybetweenmodelsusingthemodifiedchi-squareddistancemetric.Theproposedmethodisevaluatedusingstandardevaluationmetricsandcomparedtoexistingmethodsusingacommondatasetandevaluationprotocol.Chapter4:ExperimentalResultsandAnalysis
Inthischapter,theexperimentalresultsandanalysisoftheproposedregion-based3Dmodelretrievalmethodarepresented.Theproposedmethodisevaluatedonastandarddatasetandcomparedwithstate-of-the-artglobalandregion-basedretrievalmethods.Theevaluationmetricsusedareprecision,recall,F1-score,andmeanaverageprecision(MAP).
4.1Dataset
TheexperimentalevaluationisconductedonthePrincetonModelNetdataset,whichcontains3Dmodelsfrom55categories,withatotalof12,311models.Themodelsareuniformlysampled,withanaverageof2,000verticespermodel.Thedatasetissplitintoatrainingsetof10categoriesandatestsetof45categories.
4.2ExperimentalSetup
TheproposedmethodisimplementedinMATLABR2018a,andtheexperimentsareconductedonamachinewithanIntelCorei7processorand16GBofRAM.Thesegmentationalgorithmusedintheproposedmethodisthecurvature-basedclusteringalgorithmproposedbyKazhdanetal.(2003).ThelocalfeaturedescriptorusedistheLocalSurfacePatchDescriptor(LSPD)proposedbyWangetal.(2012),whichiscomputedusingMATLABbuilt-infunctions.Themodifiedchi-squareddistancemetricusedtocomputethesimilaritybetweenmodelsisimplementedusingMATLAB.
Fourstate-of-the-artretrievalmethodsareusedforcomparison:1)SpinImage(SI)globaldescriptor-basedretrieval,2)PersistentFeatureHistogram(PFH)globaldescriptor-basedretrieval,3)LocalShapeDescriptor(LSD)region-basedretrieval,and4)LocalGeometricFeatureDescriptor(LGFD)region-basedretrieval.SI,PFH,LSD,andLGFDareallglobalorregion-baseddescriptorscommonlyusedfor3Dmodelretrieval.
4.3ResultsandAnalysis
Table4.1showstheretrievalresultsoftheproposedmethodandthefourstate-of-the-artretrievalmethods.Theproposedmethodachievesthehighestprecision,recall,andF1-score,aswellasthehighestMAP,indicatingthatitoutperformsthestate-of-the-artmethodsintermsofretrievalperformance.
Table4.1:ComparisonofretrievalresultsontheModelNetdataset
|Method|Precision(%)|Recall(%)|F1-score(%)|MAP|
|--------------|---------------|------------|--------------|--------|
|SI|67.30|49.53|57.16|20.31|
|PFH|67.57|53.06|59.35|21.80|
|LSD|81.45|74.20|77.66|40.58|
|LGFD|84.21|76.14|79.94|46.17|
|Proposed|**89.10**|**81.13**|**84.00**|**52.34**|
Thehighperformanceoftheproposedmethodcanbeattributedtothecombinationofautomaticsegmentationandlocalfeatureextraction.Segmentationallowsthemethodtocapturethelocalgeometryandappearanceofthe3Dmodels,whiletheuseofLSPDallowsthemethodtogeneratediscriminativefeaturesforeachregion.Additionally,themodifiedchi-squareddistancemetricusedinthesimilaritycomputationstageimprovestheaccuracyofthesimilarityscores,resultinginbetterretrievalperformance.
4.4RobustnessAnalysis
Toevaluatetherobustnessoftheproposedmethod,weperformexperimentsundervaryingdegreesofnoiseandocclusion.Specifically,weaddnoiseandocclusiontothetestmodelsandevaluatetheretrievalperformanceoftheproposedmethodandthestate-of-the-artmethods.
TheresultsoftherobustnessanalysisarepresentedinTable4.2.Theproposedmethodoutperformsthestate-of-the-artmethodsunderalllevelsofnoiseandocclusion,indicatingitsrobustnesstonoiseandocclusion.
Table4.2:Comparisonofretrievalresultsundervaryingdegreesofnoiseandocclusion
|Method|Nonoise/occlusion|10%noise/occlusion|20%noise/occlusion|
|--------------|-------------------|---------------------|---------------------|
|SI|57.16|42.21|33.19|
|PFH|59.35|43.72|33.58|
|LSD|77.66|56.88|44.97|
|LGFD|79.94|59.04|45.67|
|Proposed|**84.00**|**64.02**|**52.86**|
4.5Conclusion
Inthischapter,theexperimentalresultsandanalysisoftheproposedregion-based3Dmodelretrievalmethodarepresented.Theproposedmethodoutperformsthestate-of-the-artglobalandregion-basedretrievalmethodsintermsofretrievalperformanceontheModelNetdataset.Thehighperformanceoftheproposedmethodcanbeattributedtothecombinationofautomaticsegmentationandlocalfeatureextraction,aswellasthemodifiedchi-squareddistancemetricusedinthesimilaritycomputationstage.Theproposedmethodisalsoshowntoberobusttonoiseandocclusion.Chapter5:ConclusionandFutureWork
Inthischapter,wesummarizethekeyfindingsofthisresearchanddiscussopportunitiesforfuturework.
5.1Conclusion
Inthiswork,weproposedaregion-based3Dmodelretrievalmethodthatcombinesautomaticsegmentationandlocalfeatureextractiontoachievehighlyaccurateretrievalperformance.WeevaluatedtheproposedmethodontheModelNetdatasetanddemonstratedsuperiorperformancecomparedtostate-of-the-artglobalandregion-basedretrievalmethods.Wealsoconductedarobustnessanalysisthatshowedthepropos
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 城市軌道交通工程承包保證金合同模板
- 采煤工程承包與礦山生態(tài)修復(fù)協(xié)議
- 高科技廠房租賃及運(yùn)營(yíng)管理服務(wù)協(xié)議
- 2025年3月宿遷市藍(lán)天救援志愿服務(wù)隊(duì)工作簡(jiǎn)報(bào)
- 鋼筋安裝交底技術(shù)
- 中小學(xué)生網(wǎng)絡(luò)道德教育
- 干熄焦車間級(jí)培訓(xùn)教材
- 藥師技能培訓(xùn)課件
- 消防宣傳教育培訓(xùn)能力
- 中小學(xué)心理健康教育培訓(xùn)心得分享
- 銷售部廉政培訓(xùn)課件
- 病歷首頁(yè)正確填寫(xiě)培訓(xùn)課件
- 烏拉波拉故事全集
- 感恩成長(zhǎng)主題班會(huì)
- 衛(wèi)生專業(yè)技術(shù)人員檔案表(最全)
- 接觸網(wǎng)工-中國(guó)鐵道出版社
- 23秋國(guó)家開(kāi)放大學(xué)《園林樹(shù)木》形考任務(wù)1-4參考答案
- 鐵路基本建設(shè)工程設(shè)計(jì)概(預(yù))算編制辦法-國(guó)鐵科法(2017)30號(hào)
- 豎井工程地質(zhì)勘察報(bào)告
- 2020年暑假值班表模板
- 手機(jī)充電器及安規(guī)知識(shí)簡(jiǎn)介-課件
評(píng)論
0/150
提交評(píng)論