高考數(shù)學壓軸難題歸納總結(jié)培優(yōu)專題2.7 欲證不等恒成立結(jié)論再造是利器 (含解析)_第1頁
高考數(shù)學壓軸難題歸納總結(jié)培優(yōu)專題2.7 欲證不等恒成立結(jié)論再造是利器 (含解析)_第2頁
高考數(shù)學壓軸難題歸納總結(jié)培優(yōu)專題2.7 欲證不等恒成立結(jié)論再造是利器 (含解析)_第3頁
高考數(shù)學壓軸難題歸納總結(jié)培優(yōu)專題2.7 欲證不等恒成立結(jié)論再造是利器 (含解析)_第4頁
高考數(shù)學壓軸難題歸納總結(jié)培優(yōu)專題2.7 欲證不等恒成立結(jié)論再造是利器 (含解析)_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

高考資源網(wǎng)(),您身邊的高考專家歡迎廣大教師踴躍來稿,稿酬豐厚。高考資源網(wǎng)(),您身邊的高考專家歡迎廣大教師踴躍來稿,稿酬豐厚。專題2.7欲證不等恒成立結(jié)論再造是利器【題型綜述】利用導(dǎo)數(shù)解決不等式恒成立問題的策略:利用導(dǎo)數(shù)證明不等式,解決導(dǎo)數(shù)壓軸題,謹記兩點:(Ⅰ)利用常見結(jié)論,如:,SKIPIF1<0,等;(Ⅱ)利用同題上一問結(jié)論或既得結(jié)論.【典例指引】例1.已知,直線與函數(shù)的圖像都相切,且與函數(shù)的圖像的切點的橫坐標為1.(I)求直線的方程及m的值;(II)若,求函數(shù)的最大值.(III)當時,求證:,取最大值,其最大值為2.(III)證明,當時,例2.設(shè)函數(shù)SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0R,SKIPIF1<0…為自然對數(shù)的底數(shù).(Ⅰ)當SKIPIF1<0時,SKIPIF1<0恒成立,求SKIPIF1<0的取值范圍;(Ⅱ)求證:SKIPIF1<0(參考數(shù)據(jù):SKIPIF1<0).【思路引導(dǎo)】(1)先構(gòu)造函數(shù)SKIPIF1<0,再對其求導(dǎo)得到SKIPIF1<0然后分SKIPIF1<0和SKIPIF1<0兩種情形分類討論進行分析求解:(2)借助(1)的結(jié)論,當SKIPIF1<0時,SKIPIF1<0對SKIPIF1<0恒成立,再令SKIPIF1<0,得到SKIPIF1<0即SKIPIF1<0;又由(Ⅰ)知,當SKIPIF1<0時,則SKIPIF1<0在SKIPIF1<0遞減,在SKIPIF1<0遞增,則SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,故有SKIPIF1<0.點評:解答本題的第一問時,先構(gòu)造函數(shù)SKIPIF1<0,再對其求導(dǎo)得到SKIPIF1<0然后分SKIPIF1<0和SKIPIF1<0兩種情形分類討論進行分析求解;證明本題的第二問時,充分借助(1)的結(jié)論及當SKIPIF1<0時,SKIPIF1<0對SKIPIF1<0恒成立,令SKIPIF1<0,得到SKIPIF1<0即SKIPIF1<0;進而由(Ⅰ)知,當SKIPIF1<0時,則SKIPIF1<0在SKIPIF1<0遞減,在SKIPIF1<0遞增,則SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,故有SKIPIF1<0.從而使得問題巧妙獲證.例3.設(shè).(l)若對一切恒成立,求的最大值;(2)是否存在正整數(shù),使得對一切正整數(shù)都成立?若存在,求的最小值;若不存在,請說明理由.【思路引導(dǎo)】(1)即在時,,從而求的參數(shù)的范圍,,所以函數(shù),所以.(2)由(1)可知當時,即,取,,得,即.累加可證到.所以.(2)設(shè),則,令得.在時,遞減;在時,遞增.∴最小值為,故,取,,得,即.累加得.∴.故存在正整數(shù),使得.當時,取,有,不符合.故.【同步訓(xùn)練】1.已知函數(shù)SKIPIF1<0,SKIPIF1<0,(其中SKIPIF1<0,SKIPIF1<0為自然對數(shù)的底數(shù),SKIPIF1<0……).(1)令SKIPIF1<0,若SKIPIF1<0對任意的SKIPIF1<0恒成立,求實數(shù)SKIPIF1<0的值;(2)在(1)的條件下,設(shè)SKIPIF1<0為整數(shù),且對于任意正整數(shù)SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的最小值.【思路引導(dǎo)】(1)由SKIPIF1<0對任意的SKIPIF1<0恒成立,即SKIPIF1<0,利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,求出最小值,即可得到實數(shù)SKIPIF1<0的值;(2)由(1)知SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)則SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,求和后利用放縮法可得SKIPIF1<0,從而可得SKIPIF1<0的最小值.所以SKIPIF1<0.(2)由(1)知SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0的最小值為SKIPIF1<0.2.設(shè)函數(shù)SKIPIF1<0.(1)當SKIPIF1<0時,求SKIPIF1<0的單調(diào)區(qū)間;(2)若SKIPIF1<0的圖象與SKIPIF1<0軸交于SKIPIF1<0兩點,且SKIPIF1<0,求SKIPIF1<0的取值范圍;(3)令SKIPIF1<0,SKIPIF1<0,證明:SKIPIF1<0.【思路引導(dǎo)】(1)當SKIPIF1<0時,求出SKIPIF1<0,由SKIPIF1<0可得增區(qū)間,由SKIPIF1<0可得減區(qū)間;(2)求出函數(shù)的導(dǎo)數(shù),由SKIPIF1<0,得到函數(shù)的單調(diào)區(qū)間,根據(jù)函數(shù)的單調(diào)性可得SKIPIF1<0,從而確定SKIPIF1<0的范圍;(3)當SKIPIF1<0時,先證明SKIPIF1<0即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0得SKIPIF1<0,則疊加得化簡即可得結(jié)果.(3)令SKIPIF1<0,∵SKIPIF1<0,∵SKIPIF1<0,得SKIPIF1<0所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,得SKIPIF1<0.當SKIPIF1<0時,SKIPIF1<0即SKIPIF1<0.令SKIPIF1<0,SKIPIF1<0得SKIPIF1<0,則疊加得:SKIPIF1<0,即SKIPIF1<0.3.已知函數(shù)SKIPIF1<0.(1)若函數(shù)SKIPIF1<0有兩個不同的零點,求實數(shù)SKIPIF1<0的取值范圍;(2)當SKIPIF1<0時,SKIPIF1<0恒成立的SKIPIF1<0的取值范圍,并證明SKIPIF1<0SKIPIF1<0.【思路引導(dǎo)】(1)函數(shù)SKIPIF1<0有兩個不同的零點,等價于SKIPIF1<0=SKIPIF1<0在(SKIPIF1<0,+SKIPIF1<0)上有兩實根,利用導(dǎo)數(shù)研究函數(shù)SKIPIF1<0的單調(diào)性,結(jié)合函數(shù)圖象即可得結(jié)果;(2)結(jié)合(1)可得SKIPIF1<0<SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0SKIPIF1<0,各式相加,化簡即可得結(jié)果.點評:不等式證明問題是近年高考命題的熱點,命題主要是和導(dǎo)數(shù)、絕對值不等式及柯西不等式相結(jié)合,導(dǎo)數(shù)部分一旦出該類型題往往難度較大,要準確解答首先觀察不等式特點,結(jié)合已解答的問題把要證的不等式變形,并運用已證結(jié)論先行放縮,然后再化簡或者進一步利用導(dǎo)數(shù)證明.4.已知函數(shù)SKIPIF1<0與SKIPIF1<0.(1)若曲線SKIPIF1<0與直線SKIPIF1<0恰好相切于點SKIPIF1<0,求實數(shù)SKIPIF1<0的值;(2)當SKIPIF1<0時,SKIPIF1<0恒成立,求實數(shù)SKIPIF1<0的取值范圍;(3)求證:SKIPIF1<0【思路引導(dǎo)】(1)根據(jù)導(dǎo)數(shù)幾何意義得SKIPIF1<0,即得實數(shù)SKIPIF1<0的值;(2)利用分參法將不等式恒成立問題轉(zhuǎn)化為對應(yīng)函數(shù)最值問題SKIPIF1<0(x>1)最大值,再利用導(dǎo)數(shù)研究函數(shù)SKIPIF1<0單調(diào)性:單調(diào)遞減,最后根據(jù)洛必達法則求最大值,即得實數(shù)SKIPIF1<0的取值范圍(3)先根據(jù)和的關(guān)系轉(zhuǎn)化為對應(yīng)項的關(guān)系:SKIPIF1<0,再利用(2)的結(jié)論SKIPIF1<0,令SKIPIF1<0,則代入放縮得證方法二:(先找必要條件)注意到SKIPIF1<0時,恰有SKIPIF1<0令SKIPIF1<0則SKIPIF1<0SKIPIF1<0在SKIPIF1<0恒成立的必要條件為SKIPIF1<0即SKIPIF1<0(3)不妨設(shè)SKIPIF1<0為SKIPIF1<0前SKIPIF1<0項和,則SKIPIF1<0要證原不等式,只需證SKIPIF1<0而由(2)知:當SKIPIF1<0時恒有SKIPIF1<0即SKIPIF1<0當且僅當SKIPIF1<0時取等號取SKIPIF1<0,則SKIPIF1<0即SKIPIF1<0即SKIPIF1<0即SKIPIF1<0成立,從而原不等式獲證.點評:對于求不等式成立時的參數(shù)范圍問題,在可能的情況下把參數(shù)分離出來,使不等式一端是含有參數(shù)的不等式,另一端是一個區(qū)間上具體的函數(shù),這樣就把問題轉(zhuǎn)化為一端是函數(shù),另一端是參數(shù)的不等式,便于問題的解決.但要注意分離參數(shù)法不是萬能的,如果分離參數(shù)后,得出的函數(shù)解析式較為復(fù)雜,性質(zhì)很難研究,就不要使用分離參數(shù)法.5.已知函數(shù),.(Ⅰ)若函數(shù)與的圖像在點處有相同的切線,求的值;(Ⅱ)當時,恒成立,求整數(shù)的最大值;(Ⅲ)證明:.【思路引導(dǎo)】(Ⅰ)求出與,由且解方程組可求的值;(Ⅱ)恒成立等價于恒成立,先證明當時恒成立,再證明時不恒成立,進而可得結(jié)果;(Ⅲ))由,令,即,即,令,各式相加即可得結(jié)果.(Ⅲ)由,令,即,即由此可知,當時,,當時,,當時,,……當時,.綜上:.即.6.已知函數(shù)SKIPIF1<0(SKIPIF1<0是自然對數(shù)的底數(shù)),SKIPIF1<0(1)求曲線SKIPIF1<0在點SKIPIF1<0處的切線方程;(2)求SKIPIF1<0的單調(diào)區(qū)間;(3)設(shè)SKIPIF1<0,其中SKIPIF1<0為SKIPIF1<0的導(dǎo)函數(shù),證明:對任意SKIPIF1<0,SKIPIF1<0【思路引導(dǎo)】(1)對函數(shù)f(x)求導(dǎo),SKIPIF1<0,代入x=1,可求得SKIPIF1<0,切點坐標SKIPIF1<0再點斜式可求切線方程.(2)定義域SKIPIF1<0因為SKIPIF1<0又SKIPIF1<0得SKIPIF1<0,可得單調(diào)區(qū)間.(3)SKIPIF1<0,SKIPIF1<0等價于SKIPIF1<0在SKIPIF1<0時恒成立,由(2)知,當SKIPIF1<0時,SKIPIF1<0的最大值SKIPIF1<0,即證.(Ⅲ)證明:因為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0等價于SKIPIF1<0在SKIPIF1<0時恒成立,由(Ⅱ)知,當SKIPIF1<0時,SKIPIF1<0的最大值SKIPIF1<0,故SKIPIF1<0,因為SKIPIF1<0時SKIPIF1<0,所以SKIPIF1<0,因此任意SKIPIF1<0,SKIPIF1<0.7.設(shè)函數(shù)SKIPIF1<0,其中SKIPIF1<0.(1)當SKIPIF1<0時,求曲線SKIPIF1<0在點SKIPIF1<0處的切線方程;(2)討論函數(shù)SKIPIF1<0的單調(diào)性;(3)當SKIPIF1<0,且SKIPIF1<0時證明不等式:SKIPIF1<0【思路引導(dǎo)】(Ⅰ)代入SKIPIF1<0時,求得SKIPIF1<0,求得切線的斜率,即可求解切線的方程;(Ⅱ)求得SKIPIF1<0的表達式,分SKIPIF1<0和SKIPIF1<0和SKIPIF1<0三種情況分類討論,即可求解函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(Ⅲ)先由SKIPIF1<0時,證得SKIPIF1<0,再取SKIPIF1<0得SKIPIF1<0,進而可證明上述不等式.(Ⅲ)證明:當SKIPIF1<0-1時,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上恒正,所以,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當SKIPIF1<0時,恒有SKIPIF1<0,即當SKIPIF1<0時,SKIPIF1<0,對任意正整數(shù)SKIPIF1<0,取SKIPIF1<0得SKIPIF1<0,所以,SKIPIF1<0=SKIPIF1<0=SKIPIF1<0SKIPIF1<0=SKIPIF1<0點評:本題主要考查了函數(shù)的綜合問題,其中解答中涉及到導(dǎo)數(shù)的幾何意義求解在某點的切線方程的求解、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求解函數(shù)的單調(diào)區(qū)間,不等關(guān)系的證明等知識點的綜合考查,試題有一定的難度,屬于中檔試題,其中解得中對導(dǎo)數(shù)的合理分類討論和根據(jù)題設(shè)合理變換和換元是解答的難點.8.已知函數(shù)SKIPIF1<0.(1)當SKIPIF1<0時,討論SKIPIF1<0的單調(diào)性;(2)當SKIPIF1<0時,若SKIPIF1<0,證明:當SKIPIF1<0時,SKIPIF1<0的圖象恒在SKIPIF1<0的圖象上方;(3)證明:SKIPIF1<0.【思路引導(dǎo)】(1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;(2)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)性質(zhì)推導(dǎo)出SKIPIF1<0恒成立,由此能證明SKIPIF1<0的圖象恒在SKIPIF1<0圖象的上方;(3)由SKIPIF1<0,設(shè)SKIPIF1<0,求出函數(shù)的導(dǎo)數(shù),從而SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,從而證明結(jié)論成立即可.(3)由(2)知,即,令,則,即,點評:本題考查導(dǎo)數(shù)知識的運用,考查函數(shù)的單調(diào)性,由SKIPIF1<0,得函數(shù)單調(diào)遞增,SKIPIF1<0得函數(shù)單調(diào)遞減;考查將問題轉(zhuǎn)化為恒成立問題,正確分離參數(shù)是關(guān)鍵,也是常用的一種手段.通過分離參數(shù)可轉(zhuǎn)化為SKIPIF1<0或SKIPIF1<0恒成立,即SKIPIF1<0或SKIPIF1<0即可,利用導(dǎo)數(shù)知識結(jié)合單調(diào)性求出SKIPIF1<0或SKIPIF1<0即得解,此題最大的難點在于構(gòu)造法證明不等式.9.已知函數(shù)SKIPIF1<0.(1)若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上遞增,求實數(shù)SKIPIF1<0的取值范圍;(2)求證:SKIPIF1<0.【思路引導(dǎo)】SKIPIF1<0對函數(shù)求導(dǎo),可知其導(dǎo)數(shù)在SKIPIF1<0大于SKIPIF1<0,利用分離變量轉(zhuǎn)化為函數(shù)求恒成立問題,可得SKIPIF1<0的取值范圍;SKIPIF1<0利用SKIPIF1<0中結(jié)論可得SKIPIF1<0,則有SKIPIF1<0,利用累加和裂項可證不等式.所以SKIPIF1<0,SKIPIF1<0,,....,,,所以SKIPIF1<0,即SKIPIF1<0,得證.10.已知函數(shù)SKIPIF1<0(其中SKIPIF1<0,SKIPIF1<0).(1)若函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù),求實數(shù)SKIPIF1<0的取值范圍;(2)當SKIPIF1<0時,求函數(shù)SKIPIF1<0在SKIPIF1<0上的最大值和最小值;(3)當SKIPIF1<0時,求證:對于任意大于1的正整數(shù)SKIPIF1<0,都有SKIPIF1<0.【思路引導(dǎo)】(1)先求出函數(shù)SKIPIF1<0的導(dǎo)數(shù)SKIPIF1<0,由題意可知:當SKIPIF1<0時,SKIPIF1<0恒成立,解出SKIPIF1<0的取值范圍即可;(2)求導(dǎo)函數(shù),確定函數(shù)的單調(diào)性,比較端點的函數(shù)值,即可求得結(jié)論;(3)利用(2)的結(jié)論,只要令SKIPIF1<0,利用放縮法證明即可.SKIPIF1<0在SKIPIF1<0上有唯一的極小值點,也是最小值點,SKIPIF1<0又因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0在SKIPIF1<0上有的最大值是SKIPIF1<0綜上所述,SKIPIF1<0在SKIPIF1<0上有的最大值是SKIPIF1<0,最小值是011.已知函數(shù)SKIPIF1<0(Ⅰ)若SKIPIF1<0有唯一解,求實數(shù)SKIPIF1<0的值;(Ⅱ)證明:當SKIPIF1<0時,SKIPIF1<0(附:SKIPIF1<0)【思路引導(dǎo)】(Ⅰ)使SKIPIF1<0有唯一解,只需滿足SKIPIF1<0,且SKIPIF1<0的解唯一,求導(dǎo)研究函數(shù),注意分類討論利用極值求函數(shù)最大值;(Ⅱ)只需證即證SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,利用單調(diào)性,極值求其最小值,證明其大于零即可.②當SKIPIF1<0,且SKIPIF1<0時,SKIPIF1<0單調(diào)遞增;當SKIPIF1<0時,SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0有唯一的一個最大值為SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0單調(diào)遞減;當SKIPIF1<0時,故SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,故令SKIPIF1<0,解得SKIPIF1<0,此時SKIPIF1<0有唯一的一個最大值為SKIPIF1<0,且SKIPIF1<0,故SKIPIF1<0的解集是SKIPIF1<0,符合題意;綜上,可得SKIPIF1<0(Ⅱ)要證當SKIPIF1<0時,SKIPIF1<0即證當SKIPIF1<0時,SKIPIF1<0,即證SKIPIF1<0由(Ⅰ)得,當SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,從而SKIPIF1<0,故只需證SKIPIF1<0,當SKIPIF1<0時成立;令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0因為SKIPIF1<0單調(diào)遞增,所以當SKIPIF1<0時,SKIPIF1<0單調(diào)遞減,即SKIPIF1<0單調(diào)遞減,當SKIPIF1<0時,SKIPIF1<0單調(diào)遞增,即SKIPIF1<0單調(diào)遞增,且SKIPIF1<0,由零點存在定理,可知SKIPIF1<0,使得SKIPIF1<0,故當SKIPIF1<0或SKIPIF1<0時,SKIPIF1<0單調(diào)遞增;當SKIPIF1<0時,SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0的最小值是SKIPIF1<0或SKIPIF1<0由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,故當SKIPIF1<0時,所以SKIPIF1<0,原不等式成立.點評:本題考查函數(shù)的單調(diào)性極值及恒成立問題,涉及函數(shù)不等式的證明,綜合性強,難度大,屬于難題.處理導(dǎo)數(shù)大題時,注意分層得分的原則,力爭第一二問答對,第三問爭取能寫點,一般涉及求函數(shù)單調(diào)性及極值時,比較容易入手,求導(dǎo)后注意分類討論,對于恒成立問題一般要分離參數(shù),然后利用函數(shù)導(dǎo)數(shù)求函數(shù)的最大值或最小值,對于含有不等式的函數(shù)問題,一般要構(gòu)造函數(shù),利用函數(shù)的單調(diào)性來解決,但涉及技巧比較多,需要多加體會.12.已知函數(shù)SKIPIF1<0.(Ⅰ)若函數(shù)SKIPIF1<0有極值,求實數(shù)SKIPIF1<0的取值范圍;(Ⅱ)當SKIPIF1<0有兩個極值點(記為SKIPIF1<0和SKIPIF1<0)時,求證:SKIPIF1<0.【思路引導(dǎo)】(Ⅰ)由已知得x>0,且有SKIPIF1<0,,由此利用導(dǎo)數(shù)性質(zhì)能求出當函數(shù)f(x)存在極值時,實數(shù)a的取值范圍是a>4.

(Ⅱ)x1,x2是x2+(2-a)x+1=0的兩個解,從而x1x2=1,欲證原不等式成立,只需證明f(x)-lnx≥f(x)-x+1成立,即證lnx-x+1≤0成立,由此利用構(gòu)造法和導(dǎo)數(shù)性質(zhì)能證.(Ⅱ)∵SKIPIF1<0,SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論