




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆新疆烏魯木齊市第四中學(xué)高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.五行學(xué)說是中華民族創(chuàng)造的哲學(xué)思想.古代先民認為,天下萬物皆由五種元素組成,分別是金、木、水、火、土,彼此之間存在如圖所示的相生相克關(guān)系.若從金、木、水、火、土五種元素中任取兩種,則這兩種元素恰是相生關(guān)系的概率是()A. B.C. D.2.下列說法中正確的是()A.命題“若,則”的否命題是真命題;B.若為真命題,則為真命題;C.“”是“”的充分條件;D.若命題:“,”,則:“,”3.橢圓的焦點坐標為()A.和 B.和C.和 D.和4.“”是“直線與直線互相垂直”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.在直三棱柱中,,,則直線與所成角的大小為()A.30° B.60°C.120° D.150°6.已知橢圓的左、右焦點分別為,過的直線與橢圓C相交P,Q兩點,若,且,則橢圓C的離心率為()A. B.C. D.7.在等差數(shù)列{an}中,已知a1=2,a2+a3=13,則a4+a5+a6等于()A.40 B.42C.43 D.458.某學(xué)校高二級選擇“史政地”“史政生”和“史地生”組合的同學(xué)人數(shù)分別為240,120和60.現(xiàn)采用分層抽樣的方法選出14位同學(xué)進行一項調(diào)查研究,則“史政生”組合中選出的人數(shù)為()A.8 B.6C.4 D.39.已知拋物線=的焦點為F,M、N是拋物線上兩個不同的點,若,則線段MN的中點到y(tǒng)軸的距離為()A.8 B.4C. D.910.若等差數(shù)列的前項和為,首項,,,則滿足成立的最大正整數(shù)是()A. B.C. D.11.雙曲線的左、右焦點分別為、,P為雙曲線C的右支上一點.以O(shè)為圓心a為半徑的圓與相切于點M,且,則該雙曲線的漸近線為()A. B.C. D.12.函數(shù)的單調(diào)遞減區(qū)間是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.曲線在點處的切線方程為______14.若正實數(shù)滿足,則的最大值是________15.秦九韶出生于普州(今資陽市安岳縣),是我國南宋時期偉大的數(shù)學(xué)家,他創(chuàng)立的秦九韶算法歷來為人稱道,其本質(zhì)是將一個次多項式寫成個一次式相組合的形式,如可將寫成,由此可得__________16.函數(shù)在點處的切線方程是_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的焦點在直線上(1)求拋物線的方程(2)設(shè)直線經(jīng)過點,且與拋物線有且只有一個公共點,求直線的方程18.(12分)已知拋物線的方程為,點,過點的直線交拋物線于,兩點(1)是否為定值?若是,求出該定值;若不是,說明理由;(2)若點是直線上的動點,且,求面積的最小值19.(12分)已知函數(shù)在區(qū)間上有最大值和最小值(1)求實數(shù)、的值;(2)設(shè),若不等式,在上恒成立,求實數(shù)的取值范圍20.(12分)已知的展開式中,第4項的系數(shù)與倒數(shù)第4項的系數(shù)之比為.(1)求m的值;(2)求展開式中所有項的系數(shù)和與二項式系數(shù)和.21.(12分)如圖,四棱錐中,,.(1)證明:平面;(2)在線段上是否存在一點,使直線與平面所成角的正弦值等于?22.(10分)已知拋物線的焦點為,點在拋物線上,且的面積為(為坐標原點)(1)求拋物線的標準方程;(2)點、是拋物線上異于原點的兩點,直線、的斜率分別為、,若,求證:直線恒過定點
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】先計算從金、木、水、火、土五種元素中任取兩種的所有基本事件數(shù),再計算其中兩種元素恰是相生關(guān)系的基本事件數(shù),利用古典概型概率公式,即得解【詳解】由題意,從金、木、水、火、土五種元素中任取兩種,共有(金,木),(金,水),(金,火),(金,土),(木,水),(木,火),(木土),(水,火),(水,土),(火,土),共10個基本事件,其中兩種元素恰是相生關(guān)系包含(金,木),(木,土),(土,水),(水,火)(火,金)共5個基本事件,所以所求概率.故選:C2、C【解析】A.寫出原命題的否命題,即可判斷其正誤;B.根據(jù)為真命題可知的p,q真假情況,由此判斷的真假;C.看命題“”能否推出“”,即可判斷;D.根據(jù)含有一個量詞的命題的否定的要求,即可判斷該命題的正誤.【詳解】A.命題“若x=y,則sinx=siny”,其否命題為若“,則”為假命題,因此A不正確;B.命題“”為真命題,則p,q中至少有一個為真命題,當二者為一真一假時,為假命題,故B不正確C.命題“若,則”為真命題,故C正確;D.命題:“,”,為特稱命題,其命題的否定:“,”,故D錯誤,故選:C3、D【解析】本題是焦點在x軸的橢圓,求出c,即可求得焦點坐標.【詳解】,可得焦點坐標為和.故選:D4、A【解析】根據(jù)直線垂直求出的范圍即可得出.【詳解】由直線垂直可得,解得或1,所以“”是“直線與直線互相垂直”的充分不必要條件.故選:A.5、B【解析】根據(jù)三棱柱的特征補全為正方體,則,為直線與所成角,連接,則為等邊三角形即可得解.【詳解】根據(jù)直三棱柱的特征,補全可得如圖所示的正方體,易知,為直線與所成角,連接,則為等邊三角形,所以,所以直線與所成角的大小為.故選:B6、B【解析】設(shè),由橢圓的定義及,結(jié)合勾股定理求參數(shù)m,進而由勾股定理構(gòu)造橢圓參數(shù)的齊次方程求離心率.【詳解】設(shè),橢圓的焦距為,則,由,有,解得,所以,故得:故選:B.7、B【解析】根據(jù)已知求出公差即可得出.【詳解】設(shè)等差數(shù)列的公差為,因為,,所以,則.故選:B.8、C【解析】根據(jù)題意求得抽樣比,再求“史政生”組合中抽取的人數(shù)即可.【詳解】根據(jù)題意,分層抽樣的抽樣比為,故從“史政生”組合120中,抽取的人數(shù)時人.故選:.9、B【解析】過分別作垂直于準線,垂足為,則由拋物線的定義可得,再過MN的中點作垂直于準線,垂足為,然后利用梯形的中位線定理可求得結(jié)果【詳解】拋物線=的焦點,準線方程為直線如圖,過分別作垂直于準線,垂足為,過MN的中點作垂直于準線,垂足為,則由拋物線的定義可得,因為,所以,因為是梯形的中位線,所以,所以線段MN的中點到y(tǒng)軸的距離為4,故選:B10、B【解析】由等差數(shù)列的,及得數(shù)列是遞減的數(shù)列,因此可確定,然后利用等差數(shù)列的性質(zhì)求前項和,確定和的正負【詳解】∵,∴和異號,又數(shù)列是等差數(shù)列,首項,∴是遞減的數(shù)列,,由,所以,,∴滿足的最大自然數(shù)為4040故選:B【點睛】關(guān)鍵點睛:本題求滿足的最大正整數(shù)的值,關(guān)鍵就是求出,時成立的的值,解題時應(yīng)充分利用等差數(shù)列下標和的性質(zhì)求解,屬于中檔題.11、A【解析】連接、,利用中位線定理和雙曲線定義構(gòu)建參數(shù)關(guān)系,即求得漸近線方程.【詳解】如圖,連接、,∵M是的中點,∴是的中位線,∴,且,根據(jù)雙曲線的定義,得,∴,∵與以原點為圓心a為半徑的圓相切,∴,可得,中,,即得,,解得,即,得.由此得雙曲線的漸近線方程為.故選:A.【點睛】本題考查了雙曲線的定義的應(yīng)用和漸近線的求法,屬于中檔題.12、D【解析】求導(dǎo)后,利用求得函數(shù)的單調(diào)遞減區(qū)間.【詳解】解:,則,由得,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求導(dǎo)后令求出切線斜率,即可寫出切線方程.【詳解】由題意知:,當時,,故切線方程為,即.故答案為:.14、4【解析】由基本不等式及正實數(shù)、滿足,可得的最大值.【詳解】由基本不等式,可得正實數(shù)、滿足,,可得,當且僅當時等號成立,故的最大值為,故答案為:4.15、【解析】利用代入法進行求解即可.【詳解】故答案為:16、【解析】求得函數(shù)的導(dǎo)數(shù),得到且,再結(jié)合直線的點斜式,即可求解.【詳解】由題意,函數(shù),可得,則且,所以在點處切線方程是,即故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)的方程為、、【解析】(1)求得點的坐標,由此求得,進而求得拋物線的方程.(2)結(jié)合圖象以及判別式求得直線的方程.【小問1詳解】拋物線的焦點在軸上,且開口向上,直線與軸的交點為,則,所以,拋物線的方程為.【小問2詳解】當直線的斜率不存在時,直線與拋物線只有一個公共點.那個直線的斜率存在時,設(shè)直線的方程為,,,,解得或.所以直線的方程為或.綜上所述,的方程為、、.18、(1)是,;(2)【解析】(1)由題意設(shè)出所在直線方程,與拋物線方程聯(lián)立,化為關(guān)于的一元二次方程,由根與系數(shù)的關(guān)系即可求得為定值;(2)當?shù)男甭蕿?時,求得三角形的面積為;當?shù)男甭什粸?時,由弦長公式求解,再由點到直線的距離公式求到的距離,代入三角形面積公式,利用函數(shù)單調(diào)性可得三角形的面積大于,由此可得面積的最小值【詳解】(1)由題意知,直線斜率存在,不妨設(shè)其方程為,聯(lián)立拋物線的方程可得,設(shè),,則,,所以,,所以,所以是定值(2)當直線的斜率為0時,,又,,此時當直線的斜率不力0時,,又因為,且直線的斜率不為0,所以,即,所以點到直線的距離,此時,因為,所以,綜上,面積的最小值為19、(1),;(2).【解析】(1)分析函數(shù)在區(qū)間上的單調(diào)性,結(jié)合已知條件可得出關(guān)于實數(shù)、的方程組,即可解得實數(shù)、的值;(2)由(1)可得,利用參變量分離法可得出,利用單調(diào)性求出函數(shù)在上的最小值,即可得出實數(shù)的取值范圍.【小問1詳解】解:的對稱軸是,又,所以,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,當時,取最小值,當時,取最大值,即,解得.【小問2詳解】解:由(1)知:,所以,,又,,令,則在上是增函數(shù).所以,,要使在上恒成立,只需,因此,實數(shù)的取值范圍為20、(1)(2)所有項的系數(shù)和為,二項式系數(shù)和為【解析】(1)寫出展開式的通項,求出其第4項系數(shù)和倒數(shù)第4項系數(shù),列出方程即可求出m的值;(2)令x=1即可求所有展開項系數(shù)之和,二項式系數(shù)之和為2m.【小問1詳解】展開式的通項為:,∴展開式中第4項的系數(shù)為,倒數(shù)第4項的系數(shù)為,∴,即.【小問2詳解】令可得展開式中所有項的系數(shù)和為,展開式中所有項的二項式系數(shù)和為.21、(1)詳解解析;(2)存在.【解析】(1)利用勾股定理證得,結(jié)合線面垂直的判定定理即可證得結(jié)論;(2)以A為原點建立空間直角坐標系,設(shè)點,,求得平面的法向量,利用已知條件建立關(guān)于的方程,進而得解.【小問1詳解】取中點為,連接,在中,,,,又,,所以,又,,而,所以,又,,,又,,平面.【小問2詳解】以A為坐標原點,以為x軸,為y軸,為z軸建立空間直角坐標系,則,,,,設(shè)點,因為點F在線段上,設(shè),,,設(shè)平面的法向量為,,,則,令,則,設(shè)直線CF與平面所成角為,,解得或(舍去),,此時點F是的三等分點,所以在線段上是存在一點,使直線與平面所成角的正弦值等于.22、(1);(2)證明見解析.【解析】(1)由點在拋物線上可得出,再利用三角形的面積
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年人行道養(yǎng)護車項目建議書
- 中職旅游教學(xué)課件
- 全球化背景下的教育趨勢比較分析
- 學(xué)生管理中的情感智能培養(yǎng)策略
- 游戲化學(xué)習(xí)在在線教育中的應(yīng)用與挑戰(zhàn)
- 中職教育語文課件《邊城》
- 教學(xué)策略優(yōu)化與學(xué)生心理健康的關(guān)聯(lián)性研究
- 基礎(chǔ)護士腫瘤科考試題庫及答案
- 2025年銅陵市重點中學(xué)高二物理第二學(xué)期期末聯(lián)考模擬試題含解析
- 商業(yè)領(lǐng)域的科技資源利用策略
- GB/T 10045-2018非合金鋼及細晶粒鋼藥芯焊絲
- GB 7099-2015食品安全國家標準糕點、面包
- 2023年納雍縣財政局系統(tǒng)事業(yè)單位招聘筆試題庫及答案解析
- 2023年廣東省普通高中學(xué)業(yè)水平考試及參考答案
- 建筑工程模板施工工藝技術(shù)要點講義豐富課件
- 永能選煤廠生產(chǎn)安全事故應(yīng)急救援預(yù)案
- 浙江省建設(shè)領(lǐng)域簡易勞動合同(A4版本)
- 位置度公差以及其計算
- 氯化銨危險化學(xué)品安全周知卡
- 浙江省本級公務(wù)車輛租賃服務(wù)驗收單(格式)
- 糖代謝紊亂的實驗診斷
評論
0/150
提交評論