2024屆新疆烏魯木齊市第四中學(xué)高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第1頁
2024屆新疆烏魯木齊市第四中學(xué)高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第2頁
2024屆新疆烏魯木齊市第四中學(xué)高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第3頁
2024屆新疆烏魯木齊市第四中學(xué)高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第4頁
2024屆新疆烏魯木齊市第四中學(xué)高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆新疆烏魯木齊市第四中學(xué)高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題考生請注意:1.答題前請將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.五行學(xué)說是中華民族創(chuàng)造的哲學(xué)思想.古代先民認(rèn)為,天下萬物皆由五種元素組成,分別是金、木、水、火、土,彼此之間存在如圖所示的相生相克關(guān)系.若從金、木、水、火、土五種元素中任取兩種,則這兩種元素恰是相生關(guān)系的概率是()A. B.C. D.2.下列說法中正確的是()A.命題“若,則”的否命題是真命題;B.若為真命題,則為真命題;C.“”是“”的充分條件;D.若命題:“,”,則:“,”3.橢圓的焦點(diǎn)坐標(biāo)為()A.和 B.和C.和 D.和4.“”是“直線與直線互相垂直”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.在直三棱柱中,,,則直線與所成角的大小為()A.30° B.60°C.120° D.150°6.已知橢圓的左、右焦點(diǎn)分別為,過的直線與橢圓C相交P,Q兩點(diǎn),若,且,則橢圓C的離心率為()A. B.C. D.7.在等差數(shù)列{an}中,已知a1=2,a2+a3=13,則a4+a5+a6等于()A.40 B.42C.43 D.458.某學(xué)校高二級選擇“史政地”“史政生”和“史地生”組合的同學(xué)人數(shù)分別為240,120和60.現(xiàn)采用分層抽樣的方法選出14位同學(xué)進(jìn)行一項(xiàng)調(diào)查研究,則“史政生”組合中選出的人數(shù)為()A.8 B.6C.4 D.39.已知拋物線=的焦點(diǎn)為F,M、N是拋物線上兩個(gè)不同的點(diǎn),若,則線段MN的中點(diǎn)到y(tǒng)軸的距離為()A.8 B.4C. D.910.若等差數(shù)列的前項(xiàng)和為,首項(xiàng),,,則滿足成立的最大正整數(shù)是()A. B.C. D.11.雙曲線的左、右焦點(diǎn)分別為、,P為雙曲線C的右支上一點(diǎn).以O(shè)為圓心a為半徑的圓與相切于點(diǎn)M,且,則該雙曲線的漸近線為()A. B.C. D.12.函數(shù)的單調(diào)遞減區(qū)間是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.曲線在點(diǎn)處的切線方程為______14.若正實(shí)數(shù)滿足,則的最大值是________15.秦九韶出生于普州(今資陽市安岳縣),是我國南宋時(shí)期偉大的數(shù)學(xué)家,他創(chuàng)立的秦九韶算法歷來為人稱道,其本質(zhì)是將一個(gè)次多項(xiàng)式寫成個(gè)一次式相組合的形式,如可將寫成,由此可得__________16.函數(shù)在點(diǎn)處的切線方程是_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的焦點(diǎn)在直線上(1)求拋物線的方程(2)設(shè)直線經(jīng)過點(diǎn),且與拋物線有且只有一個(gè)公共點(diǎn),求直線的方程18.(12分)已知拋物線的方程為,點(diǎn),過點(diǎn)的直線交拋物線于,兩點(diǎn)(1)是否為定值?若是,求出該定值;若不是,說明理由;(2)若點(diǎn)是直線上的動(dòng)點(diǎn),且,求面積的最小值19.(12分)已知函數(shù)在區(qū)間上有最大值和最小值(1)求實(shí)數(shù)、的值;(2)設(shè),若不等式,在上恒成立,求實(shí)數(shù)的取值范圍20.(12分)已知的展開式中,第4項(xiàng)的系數(shù)與倒數(shù)第4項(xiàng)的系數(shù)之比為.(1)求m的值;(2)求展開式中所有項(xiàng)的系數(shù)和與二項(xiàng)式系數(shù)和.21.(12分)如圖,四棱錐中,,.(1)證明:平面;(2)在線段上是否存在一點(diǎn),使直線與平面所成角的正弦值等于?22.(10分)已知拋物線的焦點(diǎn)為,點(diǎn)在拋物線上,且的面積為(為坐標(biāo)原點(diǎn))(1)求拋物線的標(biāo)準(zhǔn)方程;(2)點(diǎn)、是拋物線上異于原點(diǎn)的兩點(diǎn),直線、的斜率分別為、,若,求證:直線恒過定點(diǎn)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】先計(jì)算從金、木、水、火、土五種元素中任取兩種的所有基本事件數(shù),再計(jì)算其中兩種元素恰是相生關(guān)系的基本事件數(shù),利用古典概型概率公式,即得解【詳解】由題意,從金、木、水、火、土五種元素中任取兩種,共有(金,木),(金,水),(金,火),(金,土),(木,水),(木,火),(木土),(水,火),(水,土),(火,土),共10個(gè)基本事件,其中兩種元素恰是相生關(guān)系包含(金,木),(木,土),(土,水),(水,火)(火,金)共5個(gè)基本事件,所以所求概率.故選:C2、C【解析】A.寫出原命題的否命題,即可判斷其正誤;B.根據(jù)為真命題可知的p,q真假情況,由此判斷的真假;C.看命題“”能否推出“”,即可判斷;D.根據(jù)含有一個(gè)量詞的命題的否定的要求,即可判斷該命題的正誤.【詳解】A.命題“若x=y,則sinx=siny”,其否命題為若“,則”為假命題,因此A不正確;B.命題“”為真命題,則p,q中至少有一個(gè)為真命題,當(dāng)二者為一真一假時(shí),為假命題,故B不正確C.命題“若,則”為真命題,故C正確;D.命題:“,”,為特稱命題,其命題的否定:“,”,故D錯(cuò)誤,故選:C3、D【解析】本題是焦點(diǎn)在x軸的橢圓,求出c,即可求得焦點(diǎn)坐標(biāo).【詳解】,可得焦點(diǎn)坐標(biāo)為和.故選:D4、A【解析】根據(jù)直線垂直求出的范圍即可得出.【詳解】由直線垂直可得,解得或1,所以“”是“直線與直線互相垂直”的充分不必要條件.故選:A.5、B【解析】根據(jù)三棱柱的特征補(bǔ)全為正方體,則,為直線與所成角,連接,則為等邊三角形即可得解.【詳解】根據(jù)直三棱柱的特征,補(bǔ)全可得如圖所示的正方體,易知,為直線與所成角,連接,則為等邊三角形,所以,所以直線與所成角的大小為.故選:B6、B【解析】設(shè),由橢圓的定義及,結(jié)合勾股定理求參數(shù)m,進(jìn)而由勾股定理構(gòu)造橢圓參數(shù)的齊次方程求離心率.【詳解】設(shè),橢圓的焦距為,則,由,有,解得,所以,故得:故選:B.7、B【解析】根據(jù)已知求出公差即可得出.【詳解】設(shè)等差數(shù)列的公差為,因?yàn)椋?,所以,則.故選:B.8、C【解析】根據(jù)題意求得抽樣比,再求“史政生”組合中抽取的人數(shù)即可.【詳解】根據(jù)題意,分層抽樣的抽樣比為,故從“史政生”組合120中,抽取的人數(shù)時(shí)人.故選:.9、B【解析】過分別作垂直于準(zhǔn)線,垂足為,則由拋物線的定義可得,再過MN的中點(diǎn)作垂直于準(zhǔn)線,垂足為,然后利用梯形的中位線定理可求得結(jié)果【詳解】拋物線=的焦點(diǎn),準(zhǔn)線方程為直線如圖,過分別作垂直于準(zhǔn)線,垂足為,過MN的中點(diǎn)作垂直于準(zhǔn)線,垂足為,則由拋物線的定義可得,因?yàn)?,所以,因?yàn)槭翘菪蔚闹形痪€,所以,所以線段MN的中點(diǎn)到y(tǒng)軸的距離為4,故選:B10、B【解析】由等差數(shù)列的,及得數(shù)列是遞減的數(shù)列,因此可確定,然后利用等差數(shù)列的性質(zhì)求前項(xiàng)和,確定和的正負(fù)【詳解】∵,∴和異號(hào),又?jǐn)?shù)列是等差數(shù)列,首項(xiàng),∴是遞減的數(shù)列,,由,所以,,∴滿足的最大自然數(shù)為4040故選:B【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題求滿足的最大正整數(shù)的值,關(guān)鍵就是求出,時(shí)成立的的值,解題時(shí)應(yīng)充分利用等差數(shù)列下標(biāo)和的性質(zhì)求解,屬于中檔題.11、A【解析】連接、,利用中位線定理和雙曲線定義構(gòu)建參數(shù)關(guān)系,即求得漸近線方程.【詳解】如圖,連接、,∵M(jìn)是的中點(diǎn),∴是的中位線,∴,且,根據(jù)雙曲線的定義,得,∴,∵與以原點(diǎn)為圓心a為半徑的圓相切,∴,可得,中,,即得,,解得,即,得.由此得雙曲線的漸近線方程為.故選:A.【點(diǎn)睛】本題考查了雙曲線的定義的應(yīng)用和漸近線的求法,屬于中檔題.12、D【解析】求導(dǎo)后,利用求得函數(shù)的單調(diào)遞減區(qū)間.【詳解】解:,則,由得,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求導(dǎo)后令求出切線斜率,即可寫出切線方程.【詳解】由題意知:,當(dāng)時(shí),,故切線方程為,即.故答案為:.14、4【解析】由基本不等式及正實(shí)數(shù)、滿足,可得的最大值.【詳解】由基本不等式,可得正實(shí)數(shù)、滿足,,可得,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,故的最大值為,故答案為:4.15、【解析】利用代入法進(jìn)行求解即可.【詳解】故答案為:16、【解析】求得函數(shù)的導(dǎo)數(shù),得到且,再結(jié)合直線的點(diǎn)斜式,即可求解.【詳解】由題意,函數(shù),可得,則且,所以在點(diǎn)處切線方程是,即故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)的方程為、、【解析】(1)求得點(diǎn)的坐標(biāo),由此求得,進(jìn)而求得拋物線的方程.(2)結(jié)合圖象以及判別式求得直線的方程.【小問1詳解】拋物線的焦點(diǎn)在軸上,且開口向上,直線與軸的交點(diǎn)為,則,所以,拋物線的方程為.【小問2詳解】當(dāng)直線的斜率不存在時(shí),直線與拋物線只有一個(gè)公共點(diǎn).那個(gè)直線的斜率存在時(shí),設(shè)直線的方程為,,,,解得或.所以直線的方程為或.綜上所述,的方程為、、.18、(1)是,;(2)【解析】(1)由題意設(shè)出所在直線方程,與拋物線方程聯(lián)立,化為關(guān)于的一元二次方程,由根與系數(shù)的關(guān)系即可求得為定值;(2)當(dāng)?shù)男甭蕿?時(shí),求得三角形的面積為;當(dāng)?shù)男甭什粸?時(shí),由弦長公式求解,再由點(diǎn)到直線的距離公式求到的距離,代入三角形面積公式,利用函數(shù)單調(diào)性可得三角形的面積大于,由此可得面積的最小值【詳解】(1)由題意知,直線斜率存在,不妨設(shè)其方程為,聯(lián)立拋物線的方程可得,設(shè),,則,,所以,,所以,所以是定值(2)當(dāng)直線的斜率為0時(shí),,又,,此時(shí)當(dāng)直線的斜率不力0時(shí),,又因?yàn)?,且直線的斜率不為0,所以,即,所以點(diǎn)到直線的距離,此時(shí),因?yàn)椋?,綜上,面積的最小值為19、(1),;(2).【解析】(1)分析函數(shù)在區(qū)間上的單調(diào)性,結(jié)合已知條件可得出關(guān)于實(shí)數(shù)、的方程組,即可解得實(shí)數(shù)、的值;(2)由(1)可得,利用參變量分離法可得出,利用單調(diào)性求出函數(shù)在上的最小值,即可得出實(shí)數(shù)的取值范圍.【小問1詳解】解:的對稱軸是,又,所以,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,當(dāng)時(shí),取最小值,當(dāng)時(shí),取最大值,即,解得.【小問2詳解】解:由(1)知:,所以,,又,,令,則在上是增函數(shù).所以,,要使在上恒成立,只需,因此,實(shí)數(shù)的取值范圍為20、(1)(2)所有項(xiàng)的系數(shù)和為,二項(xiàng)式系數(shù)和為【解析】(1)寫出展開式的通項(xiàng),求出其第4項(xiàng)系數(shù)和倒數(shù)第4項(xiàng)系數(shù),列出方程即可求出m的值;(2)令x=1即可求所有展開項(xiàng)系數(shù)之和,二項(xiàng)式系數(shù)之和為2m.【小問1詳解】展開式的通項(xiàng)為:,∴展開式中第4項(xiàng)的系數(shù)為,倒數(shù)第4項(xiàng)的系數(shù)為,∴,即.【小問2詳解】令可得展開式中所有項(xiàng)的系數(shù)和為,展開式中所有項(xiàng)的二項(xiàng)式系數(shù)和為.21、(1)詳解解析;(2)存在.【解析】(1)利用勾股定理證得,結(jié)合線面垂直的判定定理即可證得結(jié)論;(2)以A為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)點(diǎn),,求得平面的法向量,利用已知條件建立關(guān)于的方程,進(jìn)而得解.【小問1詳解】取中點(diǎn)為,連接,在中,,,,又,,所以,又,,而,所以,又,,,又,,平面.【小問2詳解】以A為坐標(biāo)原點(diǎn),以為x軸,為y軸,為z軸建立空間直角坐標(biāo)系,則,,,,設(shè)點(diǎn),因?yàn)辄c(diǎn)F在線段上,設(shè),,,設(shè)平面的法向量為,,,則,令,則,設(shè)直線CF與平面所成角為,,解得或(舍去),,此時(shí)點(diǎn)F是的三等分點(diǎn),所以在線段上是存在一點(diǎn),使直線與平面所成角的正弦值等于.22、(1);(2)證明見解析.【解析】(1)由點(diǎn)在拋物線上可得出,再利用三角形的面積

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論