




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆浙江省寧波市余姚中學(xué)數(shù)學(xué)高二上期末統(tǒng)考模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知三棱錐O-ABC,點M,N分別為AB,OC的中點,且,用表示,則等于()A. B.C. D.2.已知函數(shù),若對任意兩個不等的正數(shù),,都有恒成立,則a的取值范圍為()A. B.C. D.3.記不超過x的最大整數(shù)為,如,.已知數(shù)列的通項公式,則使的正整數(shù)n的最大值為()A.5 B.6C.15 D.164.國際冬奧會和殘奧會兩個奧運會將于2022年在北京召開,這是我國在2008年成功舉辦夏季奧運會之后的又一奧運盛事.某電視臺計劃在奧運會期間某段時間連續(xù)播放5個廣告,其中3個不同的商業(yè)廣告和2個不同的奧運宣傳廣告,要求最后播放的必須是奧運宣傳廣告,且2個奧運宣傳廣告不能相鄰播放,則不同的播放方式有()A.120種 B.48種C.36種 D.18種5.雙曲線的兩個焦點為,,雙曲線上一點到的距離為8,則點到的距離為()A.2或12 B.2或18C.18 D.26.已知四棱錐,底面為平行四邊形,分別為,上的點,,設(shè),則向量用為基底表示為()A. B.C. D.7.已知實數(shù)x,y滿足約束條件,則的最大值為()A. B.0C.3 D.58.已知等差數(shù)列的前n項和為,,,若(),則n的值為()A.15 B.14C.13 D.129.已知向量,且,則的值為()A.4 B.2C.3 D.110.定義焦點相同,且離心率互為倒數(shù)的橢圓和雙曲線為一對相關(guān)曲線.已知,是一對相關(guān)曲線的焦點,Р是這對相關(guān)曲線在第一象限的交點,則點Р與以為直徑的圓的位置關(guān)系是()A.在圓外 B.在圓上C.在圓內(nèi) D.不確定11.已知雙曲線的一條漸近線方程為,且與橢圓有公共焦點.則C的方程為()A. B.C. D.12.已知傾斜角為的直線與雙曲線,相交于,兩點,是弦的中點,則雙曲線的漸近線的斜率是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在空間直角坐標(biāo)系中,已知向量,則的值為__________.14.某校學(xué)生在研究折紙實驗中發(fā)現(xiàn),當(dāng)對折后紙張達(dá)到一定的厚度時,便不能繼續(xù)對折了.在理想情況下,對折次數(shù)與紙的長邊和厚度有關(guān)系:.現(xiàn)有一張長邊為30cm,厚度為0.05cm的矩形紙,根據(jù)以上信息,當(dāng)對折完4次時,的最小值為________;該矩形紙最多能對折________次.(參考數(shù)值:,)15.已知直線與平行,則___________.16.曲線在點處的切線方程為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知P,Q的坐標(biāo)分別為,,直線PM,QM相交于點M,且它們的斜率之積是.設(shè)點M的軌跡為曲線C.(1)求曲線的方程;(2)設(shè)為坐標(biāo)原點,圓的半徑為1,直線:與圓相切,且與曲線交于不同的兩點A,B.當(dāng),且滿足時,求面積的取值范圍.18.(12分)在①,②,③這三個條件中任選一個補充在下面問題中,并解答下列題目設(shè)首項為2的數(shù)列的前n項和為,前n項積為,且______(1)求數(shù)列的通項公式;(2)若數(shù)列的前n項和為,令,求數(shù)列的前n項和19.(12分)已知拋物線C:,經(jīng)過的直線與拋物線C交于A,B兩點(1)求的值(其中為坐標(biāo)原點);(2)設(shè)F為拋物線C的焦點,直線為拋物線C的準(zhǔn)線,直線是拋物線C的通徑所在的直線,過C上一點P()()作直線與拋物線相切,若直線與直線相交于點M,與直線相交于點N,證明:點P在拋物線C上移動時,恒為定值,并求出此定值20.(12分)已知點,(1)若過點P作的切線只有一條,求實數(shù)的值及切線方程;(2)過點P作斜率為1的直線l與相交于M,N兩點,當(dāng)面積最大時,求實數(shù)的值21.(12分)已知是邊長為2的正方形,正方形繞旋轉(zhuǎn)形成一個圓柱;(1)求該圓柱的表面積;(2)正方形繞順時針旋轉(zhuǎn)至,求異面直線與所成角的大小22.(10分)如圖所示,四棱錐的底面為矩形,,,過底面對角線作與平行的平面交于點(1)求二面角的余弦值;(2)求與所成角的余弦值;(3)求與平面所成角的正弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)空間向量的加法、減法和數(shù)乘運算可得結(jié)果.【詳解】.故選:D2、A【解析】將已知條件轉(zhuǎn)化為時恒成立,利用參數(shù)分離的方法求出a的取值范圍【詳解】對任意都有恒成立,則時,,當(dāng)時恒成立,
,當(dāng)時恒成立,,故選:A3、C【解析】根據(jù)取整函數(shù)的定義,可求出的值,即可得到答案;【詳解】,,,,,,當(dāng)時,,使的正整數(shù)n的最大值為,故選:C4、C【解析】先考慮最后位置必為奧運宣傳廣告,再將另一奧運廣告插入3個商業(yè)廣告之間,最后對三個商業(yè)廣告全排列,即可求解.【詳解】先考慮最后位置必為奧運宣傳廣告,有種,另一奧運廣告插入3個商業(yè)廣告之間,有種;再考慮3個商業(yè)廣告的順序,有種,故共有種.故選:C.5、C【解析】利用雙曲線的定義求.【詳解】解:由雙曲線定義可知:解得或(舍)∴點到的距離為18,故選:C.6、D【解析】通過尋找封閉的三角形,將相關(guān)向量一步步用基底表示即可.【詳解】.故選:D7、D【解析】先畫出可行域,由,得,作出直線,向上平移過點A時,取得最大值,求出點A的坐標(biāo),代入可求得結(jié)果【詳解】不等式組表示的可行域,如圖所示由,得,作出直線,向上平移過點A時,取得最大值,由,得,即,所以的最大值為,故選:D8、B【解析】由已知條件列方程組求出,再由列方程求n的值【詳解】設(shè)等差數(shù)列的公差為,則由,,得,解得,因為,所以,即,解得或(舍去),故選:B9、A【解析】由題意可得,利用空間向量數(shù)量積的坐標(biāo)表示列方程,解方程即可求解.【詳解】因為,所以,因為向量,,所以,解得,所以的值為,故選:A.10、A【解析】設(shè)橢圓的長軸長為,橢圓的焦距為,雙曲線的實軸長為,根據(jù)題意可得,設(shè),根據(jù)橢圓與雙曲線的定義將分別用表示,設(shè),再根據(jù)兩點的距離公式將點的坐標(biāo)用表示,從而可判斷出點與圓的位置關(guān)系.【詳解】解:設(shè)橢圓的長軸長為,橢圓的焦距為,雙曲線的實軸長為,設(shè)橢圓和雙曲線的離心率分別為,則,所以,以為直徑的圓的方程為,設(shè),則有,所以,設(shè),,所以①,②,則①②得,所以,所以,將代入②得,所以,,則點到圓心的距離為,所以點Р在以為直徑的圓外.故選:A.11、B【解析】根據(jù)已知和漸近線方程可得,雙曲線焦距,結(jié)合的關(guān)系,即可求出結(jié)論.【詳解】因為雙曲線的一條漸近線方程為,則①.又因為橢圓與雙曲線有公共焦點,雙曲線的焦距,即c=3,則a2+b2=c2=9②.由①②解得a=2,b=,則雙曲線C的方程為.故選:B.12、A【解析】依據(jù)點差法即可求得的關(guān)系,進(jìn)而即可得到雙曲線的漸近線的斜率.【詳解】設(shè),則由,可得則,即,則則雙曲線的漸近線的斜率為故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題知,進(jìn)而根據(jù)向量數(shù)量積運算的坐標(biāo)表示求解即可.【詳解】解:因為向量,所以,所以故答案為:14、①.64②.6【解析】利用即可求解,利用和換底公式進(jìn)行求解.【詳解】令,則,則,即,即當(dāng)對折完4次時,最小值為;由題意,得,,則,所以該矩形紙最多能對折6次.故答案為:64,6.15、【解析】根據(jù)平行可得斜率相等列出關(guān)于參數(shù)的方程,解方程進(jìn)行檢驗即可求解.【詳解】因為直線與平行,所以,解得或,又因為時,,,所以直線,重合故舍去,而,,,所以兩直線平行.所以,故答案為:3.【點睛】(1)當(dāng)直線的方程中存在字母參數(shù)時,不僅要考慮到斜率存在的一般情況,也要考慮到斜率不存在的特殊情況.同時還要注意x,y的系數(shù)不能同時為零這一隱含條件(2)在判斷兩直線平行、垂直時,也可直接利用直線方程的系數(shù)間的關(guān)系得出結(jié)論16、.【解析】由求導(dǎo)公式求出導(dǎo)數(shù),再把代入求出切線的斜率,代入點式方程化為一般式即可.【詳解】由題意得,∴在點處的切線的斜率是,則在點處的切線方程是,即.【點睛】本題考查導(dǎo)數(shù)的幾何意義.注意區(qū)分“在某點處的切線”與“過某點的切線”,前者“某點”是切點,后者“某點”不一定是切點.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】【小問1詳解】設(shè)點,則,整理得曲線的方程:【小問2詳解】因為圓的半徑為1,直線:與圓相切,則,,設(shè),將代入得,,,,,所以,,因為,令,在上單調(diào)減,,所以18、(1);(2).【解析】(1)選擇不同的條件,再通過構(gòu)造數(shù)列以及累乘法即可求得對應(yīng)情況下的通項公式;(2)根據(jù)(1)中所求,求得,再利用錯位相減法求其前項和即可.【小問1詳解】選①:∵,即,∴.即,∴數(shù)列是常數(shù)列,∴,故;選②:∵,∴時,,則,即∴,∴;當(dāng)時,也滿足,∴;選③:得,所以數(shù)列是等差數(shù)列,首項為2,公差為1則,∴.【小問2詳解】由(1)知當(dāng)時,,∴又∵時,,符合上式,∴∴∴而相減得∴.19、(1)(2)證明見解析,定值為【解析】(1)設(shè)出直線的方程并與拋物線方程聯(lián)立,結(jié)合根與系數(shù)關(guān)系求得.(2)求得過點的拋物線的切線方程,由此求得兩點的坐標(biāo),通過化簡來證得為定值,并求得定值.【小問1詳解】依題意可知直線的斜率不為零,設(shè)直線的方程為,設(shè),,消去并化簡得,所以,所以.小問2詳解】拋物線方程為,焦點坐標(biāo)為,準(zhǔn)線,通徑所在直線,在拋物線上,且,所以過點的拋物線的切線的斜率存在且不為零,設(shè)過點的切線方程為,由消去并化簡得,,將代入上式并化簡得,解得,所以切線方程為,令得,令得,,將代入上式并化簡得,所以為定值,且定值為.20、(1);當(dāng)時,切線方程為;當(dāng)時,切線方程為;(2)或【解析】(1)根據(jù)題意可知P在圓上,據(jù)此即可求t和切線方程;(2)的面積,則當(dāng)面積最大時,.即,據(jù)此即可求出圓心O到直線l的距離,即可求出t的數(shù)值.【小問1詳解】由題意得點在上,∴,,①當(dāng)時,切點,直線OP的斜率,切線斜率,切線方程為,即②當(dāng)時,切點,直線OP的斜率,切線斜率,切線方程,即【小問2詳解】∵的面積,則當(dāng)面積最大時,.即,則圓心O到直線l距離又直線,即,則,解之得或注:亦可設(shè)圓心O到直線l的距離為d,則的面積,當(dāng)且僅當(dāng),即時取等號(下同)21、(1)(2)【解析】(1)利用表面積公式直接計算得到答案.(2)連接和,,故即為異面直線與所成角,證明,根據(jù)長度關(guān)系得到答案.【小問1詳解】【小問2詳解】如圖所示:連接和,,故即為異面直線與所成角,,,,故平面,平面,故,,故,直角中,,,,故異面直線與所成角的大小為.22、(1);(2);(3).【解析】(1)設(shè),連接、,證明出平面,推導(dǎo)出為的中點,然后以點為坐標(biāo)原點,、、的方向分別為、、軸的正方向建立空間直角坐標(biāo)系,利用空間向量法可求得二面角的余弦值;(2)利用空間向量法可求得與所成角的余弦值;(3)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 綠色建筑材料市場推廣困境與政策支持路徑探索:2025年行業(yè)分析報告
- 理解樂曲結(jié)構(gòu)2025年樂理考試試題及答案
- 動漫產(chǎn)業(yè)生態(tài)圈構(gòu)建報告:2025年產(chǎn)業(yè)鏈協(xié)同與創(chuàng)新發(fā)展策略
- 聚焦2025年社區(qū)團(tuán)購線上線下融合策略與用戶留存研究報告
- 綠色金融產(chǎn)品創(chuàng)新與綠色金融市場2025年市場深度報告
- 建筑施工安全評價標(biāo)準(zhǔn)解析試題及答案
- 高端數(shù)控機(jī)床智能化升級效益評估:2025年技術(shù)路徑與市場前景分析報告
- 江西單招解剖試題及答案
- 江蘇省泰州市口岸實驗校2025屆三月調(diào)考物理試題含解析
- 河南造價員試題及答案
- 《危險化學(xué)品企業(yè)安全生產(chǎn)標(biāo)準(zhǔn)化規(guī)范》專業(yè)深度解讀與應(yīng)用培訓(xùn)指導(dǎo)材料之8:5管理要求-5.8作業(yè)安全(雷澤佳編制-2025A0)
- (二模)2024~2025學(xué)年度蘇錫常鎮(zhèn)四市高三教學(xué)情況調(diào)研(二)物理試卷(含答案)
- 比亞迪充電樁轉(zhuǎn)讓合同協(xié)議
- 事件網(wǎng)絡(luò)輿情傳播機(jī)制的建模與仿真-全面剖析
- 初中信息技術(shù)蘇科版(2023)七年級下冊第七單元 跨學(xué)科主題學(xué)習(xí)-絲綢之路公開課教案及反思
- 2025年高考語文作文預(yù)測52篇(含范文)
- 山西太原事業(yè)單位考試《行測》模擬題帶答案2023年
- 《昭君出塞》課本劇劇本:感受歷史深處的家國情懷
- 領(lǐng)略文化魅力堅定文化自信(課件)(春晚、文化專題)2024-2025學(xué)年統(tǒng)編版道德與法治中考二輪熱點專題復(fù)習(xí)
- 投融資考試筆試題及答案
- 疫苗出入庫登記制度
評論
0/150
提交評論