




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省廬巢六校聯(lián)盟2023-2024學年高二上數(shù)學期末學業(yè)水平測試試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋物線的準線方程是A. B.C. D.2.某班進行了一次數(shù)學測試,全班學生的成績都落在區(qū)間內,其成績的頻率分布直方圖如圖所示,若該班學生這次數(shù)學測試成績的中位數(shù)的估計值為,則的值為()A. B.C. D.3.橢圓的左、右焦點分別為,過焦點的傾斜角為直線交橢圓于兩點,弦長,若三角形的內切圓的面積為,則橢圓的離心率為()A. B.C. D.4.設數(shù)列的前項和為,當時,,,成等差數(shù)列,若,且,則的最大值為()A. B.C. D.5.如圖,某圓錐軸截面是等邊三角形,點是底面圓周上的一點,且,點是的中點,則異面直線與所成角的余弦值是()A. B.C. D.6.在等差數(shù)列中,為其前n項和,,則()A.55 B.65C.15 D.607.函數(shù)f(x)=的圖象大致形狀是()A. B.C. D.8.某市物價部門對5家商場的某商品一天的銷售量及其售價進行調查,5家商場的售價(元)和銷售量(件)之間的一組數(shù)據(jù)如表所示.按公式計算,與的回歸直線方程是,則下列說法錯誤的是()售價99.51010.511銷售量1110865A.B.售價變量每增加1個單位時,銷售變量大約減少3.2個單位C.當時,的估計值為12.8D.銷售量與售價成正相關9.曲線為四葉玫瑰線,這種曲線在苜蓿葉型立交橋的布局中有非常廣泛的應用,苜蓿葉型立交橋有兩層,將所有原來需要穿越相交道路的轉向都由環(huán)形匝道來實現(xiàn),即讓左轉車輛行駛環(huán)道后自右側切向匯入高速公路,四條環(huán)形匝道就形成了苜蓿葉的形狀.下列結論正確的個數(shù)是()①曲線C關于點(0,0)對稱;②曲線C關于直線y=x對稱;③曲線C的面積超過4π.A.0 B.1C.2 D.310.已知集合,則()A. B.C. D.11.已知等差數(shù)列的公差為,則“”是“數(shù)列為單調遞增數(shù)列”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件12.為了了解1000名學生的學習情況,采用系統(tǒng)抽樣的方法,從中抽取容量為50的樣本,則分段的間隔為()A.20 B.25C.40 D.50二、填空題:本題共4小題,每小題5分,共20分。13.已知某次數(shù)學期末試卷中有8道4選1的單選題14.如圖所示,二面角為,是棱上的兩點,分別在半平面內,且,,,,,則的長______15.若,,,四點中恰有三點在橢圓上,則橢圓C的方程為________.16.設命題:,,則為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)若雙曲線-=1(a>0,b>0)的焦點坐標分別為和,且該雙曲線經過點P(3,1)(1)求雙曲線的方程;(2)若F是雙曲線的右焦點,Q是雙曲線上的一點,過點F,Q的直線l與y軸交于點M,且,求直線l的斜率18.(12分)已知p:,q:(1)若p是q的必要不充分條件,求實數(shù)m的范圍;(2)若是的必要不充分條件,求實數(shù)m的范圍19.(12分)已知橢圓的左、右焦點分別為,且,直線過與交于兩點,的周長為8(1)求的方程;(2)過作直線交于兩點,且向量與方向相同,求四邊形面積的取值范圍20.(12分)如圖,在三棱柱中,面ABC,,,D為BC的中點(1)求證:平面;(2)若F為中點,求與平面所成角的正弦值21.(12分)已知數(shù)列的前n項和,滿足,.(1)求證:數(shù)列是等差數(shù)列;(2)令,求數(shù)列的前n項和.22.(10分)冠狀病毒是一個大型病毒家族,已知可引起感冒以及中東呼吸綜合征(MERS)和嚴重急性呼吸綜合征(SARS)等較嚴重疾病.而今年出現(xiàn)的新型冠狀病毒(nCoV)是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株.人感染了新型冠狀病毒后常見體征有呼吸道癥狀、發(fā)熱、咳嗽、氣促和呼吸困難等.在較嚴重病例中,感染可導致肺炎、嚴重急性呼吸綜合征、腎衰竭,甚至死亡.應國務院要求,黑龍江某醫(yī)院選派醫(yī)生參加援鄂醫(yī)療,該院呼吸內科有3名男醫(yī)生,2名女醫(yī)生,其中李亮(男)為科室主任;該院病毒感染科有2名男醫(yī)生,2名女醫(yī)生,其中張雅(女)為科室主任,現(xiàn)在院方決定從兩科室中共選4人參加援鄂醫(yī)療(最后結果用數(shù)字表達)(1)若至多有1名主任參加,有多少種派法?(2)若呼吸內科至少2名醫(yī)生參加,有多少種派法?(3)若至少有1名主任參加,且有女醫(yī)生參加,有多少種派法?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)拋物線的概念,可得準線方程為2、A【解析】根據(jù)已知條件可得出關于、的方程組,解出這兩個量的值,即可求得結果.【詳解】由題意有,得,又由,得,解得,,有故選:A.3、C【解析】由題可得直線AB的方程,從而可表示出三角形面積,又利用焦點三角形及三角形內切圓的性質,也可表示出三角形面積,則橢圓的離心率即求.【詳解】由題知直線AB的方程為,即,∴到直線AB距離,又三角形的內切圓的面積為,則半徑為1,由等面積可得,.故選:C.4、A【解析】根據(jù)等差中項寫出式子,由遞推式及求和公式寫出和,進而得出結果.【詳解】解:由,,成等差數(shù)列,可得,則,,,可得數(shù)列中,每隔兩項求和是首項為,公差為的等差數(shù)列.則,,則的最大值可能為.由,,可得.因為,,,即,所以,則,當且僅當時,,符合題意,故的最大值為.故選:A.【點睛】本題考查等差數(shù)列的性質和遞推式的應用,考查分析問題能力,屬于難題.5、C【解析】建立空間直角坐標系,分別得到,然后根據(jù)空間向量夾角公式計算即可.【詳解】以過點且垂直于平面的直線為軸,直線,分別為軸,軸,建立如圖所示的空間直角坐標系.不妨設,則根據(jù)題意可得,,,,所以,,設異面直線與所成角為,則.故選:C.6、B【解析】根據(jù)等差數(shù)列求和公式結合等差數(shù)列的性質即可求得.【詳解】解析:因為為等差數(shù)列,所以,即,.故選:B7、B【解析】利用函數(shù)的奇偶性排除選項A,C,然后利用特殊值判斷即可【詳解】解:由題得函數(shù)的定義域為,關于原點對稱.所以函數(shù)是奇函數(shù),排除選項A,C.當時,,排除選項D,故選:B8、D【解析】首先求出、,再根據(jù)回歸直線方程必過樣本中心點,即可求出,再根據(jù)回歸直線方程的性質一一判斷即可;【詳解】解:因為,,與回歸直線方程,恒過定點,,解得,故A正確,所以回歸直線方程為,即售價變量每增加1個單位時,銷售變量大約減少3.2個單位,故B正確;當時,即當時,的估計值為12.8,故C正確;因為回歸直線方程為,所以銷售量與售價成負相關,故D錯誤;故選:D9、C【解析】根據(jù)圖像或解析式即可判斷對稱性①②;估算第一象限內圖像面積即可判斷③.【詳解】①將點(-x,-y)代入后依然為,故曲線C關于原點對稱;②將點(y,x)代入后依然為,故曲線C關于y=x對稱;③曲線C在四個象限的圖像是完全相同的,不妨只研究第一象限的部分,∵,∴曲線C上離原點最遠的點的距離為顯然第一象限內曲線C的面積小于以為直徑的圓的面積,又∵,∴第一象限內曲線C的面積小于,則曲線C的總面積小于4π.故③錯誤.故選:C.10、C【解析】解一元二次不等式求集合A,再由集合的交運算求即可.【詳解】由題設,,∴.故選:C.11、C【解析】利用等差數(shù)列的定義和數(shù)列單調性的定義判斷可得出結論.【詳解】若,則,即,此時,數(shù)列為單調遞增數(shù)列,即“”“數(shù)列為單調遞增數(shù)列”;若等差數(shù)列為單調遞增數(shù)列,則,即“”“數(shù)列為單調遞增數(shù)列”.因此,“”是“數(shù)列為單調遞增數(shù)列”的充分必要條件.故選:C.12、A【解析】根據(jù)系統(tǒng)抽樣定義可求得結果【詳解】分段的間隔為故選:A二、填空題:本題共4小題,每小題5分,共20分。13、##0.84375【解析】合理設出事件,利用全概率公式進行求解.【詳解】設小王從這8題中任選1題,且作對為事件A,選到能完整做對的5道題為事件B,選到有思路的兩道題為事件C,選到完全沒有思路為事件D,則,,,由全概率公式可得:PA=PB故答案為:14、【解析】推導出,從而,結合,,,能求出的長【詳解】二面角為,是棱上的兩點,分別在半平面、內,且所以,所以,,,的長故答案為【點睛】本題主要考查空間向量的運算法則以及數(shù)量積的運算法則,意在考查靈活應用所學知識解答問題的能力,是中檔題15、【解析】由于,關于軸對稱,故由題設知C經過,兩點,C不經過點,然后求出a,b,即可得到橢圓的方程.【詳解】解:由于,關于軸對稱,故由題設知經過,兩點,所以.又由知,不經過點,所以點在上,所以.因此,故方程為.故答案為:.【點睛】求橢圓的標準方程有兩種方法:①定義法:根據(jù)橢圓的定義,確定,的值,結合焦點位置可寫出橢圓方程②待定系數(shù)法:若焦點位置明確,則可設出橢圓的標準方程,結合已知條件求出,;若焦點位置不明確,則需要分焦點在軸上和軸上兩種情況討論,也可設橢圓的方程為16、,【解析】由全稱命題的否定即可得到答案【詳解】根據(jù)全稱命題的否定,可得為,【點睛】本題考查了含有量詞的命題否定,屬于基礎題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)題意列方程組求解(2)待定系數(shù)法設直線后,由條件求出坐標后代入雙曲線方程求解【小問1詳解】,解得,故雙曲線方程為【小問2詳解】,故設直線方程為則,由得:故,點在雙曲線上,則,解得直線l的斜率為18、(1),;(2),【解析】解不等式,(1)由題意得,從而求得;(2)由題意可轉化為是的充分不必要條件,從而得到,化簡即可【小問1詳解】解不等式得,是的必要不充分條件,,解得,,即實數(shù)的范圍為,;小問2詳解】是的必要不充分條件,是的充分不必要條件,故,解得,,即實數(shù)的范圍為,19、(1);(2).【解析】(1)根據(jù)給定條件直接求出半焦距,及長半軸長即可作答.(2)根據(jù)給定條件結合橢圓的對稱性可得四邊形為平行四邊形,設出直線l的方程,與橢圓C的方程聯(lián)立,借助韋達定理、對勾函數(shù)性質計算作答.【小問1詳解】依題意,橢圓半焦距,由橢圓定義知,的周長,解得,,因此橢圓的方程為.【小問2詳解】依題意,直線的斜率不為0,設直線的方程為,,由消去并整理得:,則,,因與方向相同,即,又橢圓是以原點O為對稱中心的中心對稱圖形,于是得,即四邊形為平行四邊形,其面積,則,令,則,則,顯然在上單調遞增,則當時,,即,從而可得,所以四邊形面積的取值范圍為.【點睛】結論點睛:過定點的直線l:y=kx+b交圓錐曲線于點,,則面積;過定點直線l:x=ty+a交圓錐曲線于點,,則面積20、(1)證明見解析(2)【解析】(1)連接交于點O,連接OD,通過三角形中位線證明即可;(2)建立空間直角坐標系,利用向量法求解即可.【小問1詳解】解法1:如圖,連接交于點O,連接OD,因為在三棱柱中,四邊形是平行四邊形,所以O是的中點,因為D為BC的中點,所以在中,,因為平面,平面,所以平面平面解法2:因為在三棱柱中,面ABC,,所以BA,BC,兩兩垂直,故以B點為坐標原點,建立如圖的空間直角坐標系,因為,所以B(0,0,0),A(2,0,0),D(0,1,0),,,所以,,,設平面的一個法向量為,則,即,令,則,∴,平面,所以平面;【小問2詳解】設與平面所成角為,由(1)知平面法向量為,F(xiàn)為中點,∴,,∴即與平面所成角正弦值為.21、(1)證明見解析(2)【解析】(1)先將變?yōu)?,然后等式兩邊同除即可得答案;?)求出,再用錯位相減求和【小問1詳解】證明:∵∴由已知易得,∴∴數(shù)列是首項,公差為的等差數(shù)列;【小問2詳解】由(1)可知,∴∴①②①-②有∴22、(1)105種(2)105種(3)87種【解析】(1)至多有1名主任參加,包括兩種情況:一種是無主任參加,另一種是只有1名主任參加,利用分類計數(shù)原理可得結果;(2)呼吸內科至少2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司組織春季活動方案
- 公司職工送溫暖活動方案
- 公司文藝晚會活動方案
- 公司愛心捐贈活動方案
- 公司春游拓展活動方案
- 公司看敬老院活動方案
- 公司落成典禮策劃方案
- 公司狂歡潑水活動方案
- 公司春節(jié)維系活動方案
- 公司節(jié)日剪彩活動方案
- 2025年小學語文期末考試試題及答案
- 發(fā)改委立項用-超薄玻璃項目可行性研究報告
- 2025年北京市第一次普通高中學業(yè)水平合格性考試歷史試題(含答案)
- 蘇教版-數(shù)學二年級下冊-期末試卷10套
- 《陸上風電場工程設計概算編制規(guī)定及費用標準》(NB-T 31011-2019)
- 新科hg5300功放說明書
- 2023-2024學年湖南省常德市小學語文六年級期末評估試卷附參考答案和詳細解析
- 氣污染源自動監(jiān)控設施臺賬記錄模版校準記錄
- JJF 1169-2007汽車制動操縱力計校準規(guī)范
- 新高考高中物理競賽專題1力學50題競賽真題強化訓練原卷版
- 曬紋資料大全
評論
0/150
提交評論