廣西陸川縣中學(xué)2023年數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測試題含解析_第1頁
廣西陸川縣中學(xué)2023年數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測試題含解析_第2頁
廣西陸川縣中學(xué)2023年數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測試題含解析_第3頁
廣西陸川縣中學(xué)2023年數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測試題含解析_第4頁
廣西陸川縣中學(xué)2023年數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

廣西陸川縣中學(xué)2023年數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數(shù)列{an}的前n項和為Sn,且S7=28,則a4=()A.4 B.7C.8 D.142.一個幾何體的三視圖都是半徑為1的圓,在該幾何體內(nèi)放置一個高度為1的長方體,則長方體的體積最大值為()A. B.C. D.13.在等差數(shù)列中,若,且前n項和有最大值,則使得的最大值n為()A.15 B.16C.17. D.184.設(shè)函數(shù)是定義在上的函數(shù)的導(dǎo)函數(shù),有,若,,則,,的大小關(guān)系是()A. B.C. D.5.某種疾病的患病率為0.5%,通過驗血診斷該病的誤診率為2%,即非患者中有2%的人驗血結(jié)果為陽性,患者中有2%的人驗血結(jié)果為陰性,隨機抽取一人進行驗血,則其驗血結(jié)果為陽性的概率為()A.0.0689 B.0.049C.0.0248 D.0.026.已知兩個向量,若,則的值為()A. B.C.2 D.87.函數(shù)y=ln(1﹣x)的圖象大致為()A. B.C D.8.在正三棱錐S-ABC中,AB=4,D、E分別是SA、AB中點,且DE⊥CD,則三棱錐S-ABC外接球的體積為()A.π B.πC.π D.π9.若球的半徑為,一個截面圓的面積是,則球心到截面圓心的距離是()A. B.C. D.10.空氣質(zhì)量指數(shù)大小分為五級指數(shù)越大說明污染的情況越嚴(yán)重,對人體危害越大,指數(shù)范圍在:,,,,分別對應(yīng)“優(yōu)”、“良”、“輕中度污染”、“中度重污染”、“重污染”五個等級,如圖是某市連續(xù)14天的空氣質(zhì)量指數(shù)趨勢圖,下面說法錯誤的是().A.這14天中有4天空氣質(zhì)量指數(shù)為“良”B.從2日到5日空氣質(zhì)量越來越差C.這14天中空氣質(zhì)量的中位數(shù)是103D.連續(xù)三天中空氣質(zhì)量指數(shù)方差最小是9日到11日11.在平面幾何中,將完全覆蓋某平面圖形且直徑最小的圓,稱為該平面圖形的最小覆蓋圓.如線段的最小覆蓋圓就是以該線段為直徑的圓,銳角三角形的最小覆蓋圓就是該三角形的外接圓.若,,,則的最小覆蓋圓的半徑為()A. B.C. D.12.在矩形中,,在該矩形內(nèi)任取一點M,則事件“”發(fā)生的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,若在區(qū)間上有且只有一個極值點,則a的取值范圍是______14.圓錐的高為1,底面半徑為,則過圓錐頂點的截面面積的最大值為____________15.函數(shù)的單調(diào)遞減區(qū)間是____16.已知數(shù)列滿足,則的最小值為__________.的前20項和為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,平面平面ABCD,底面ABCD是矩形,,,直線PA與CD所成角為60°.(1)求直線PD與平面ABCD所成角的正弦值;(2)求二面角的正弦值.18.(12分)如圖,在三棱錐中,側(cè)面PAB是邊長為4的正三角形且與底面ABC垂直,點D,E,F(xiàn),H分別是棱PA,AB,BC,PC的中點(1)若點G在棱BC上,且BG=3GC,求證:平面∥平面DHG;(2)若AC=2,,求二面角的余弦值19.(12分)年世界人工智能大會已于年月在上海徐匯西岸舉行,某高校的志愿者服務(wù)小組受大會展示項目的啟發(fā),會后決定開發(fā)一款“貓捉老鼠”的游戲.如圖所示,、兩個信號源相距米,是的中點,過點的直線與直線的夾角為,機器貓在直線上運動,機器鼠的運動軌跡始終滿足:接收到點的信號比接收到點的信號晚秒(注:信號每秒傳播米).在時刻時,測得機器鼠距離點為米.(1)以為原點,直線為軸建立平面直角坐標(biāo)系(如圖),求時刻時機器鼠所在位置的坐標(biāo);(2)游戲設(shè)定:機器鼠在距離直線不超過米的區(qū)域運動時,有“被抓”的風(fēng)險.如果機器鼠保持目前的運動軌跡不變,是否有“被抓”風(fēng)險?20.(12分)已知橢圓的中心在原點,對稱軸為坐標(biāo)軸且焦點在軸上,拋物線:,若拋物線的焦點在橢圓上,且橢圓的離心率為.(1)求橢圓的方程;(2)已知斜率存在且不為零的直線滿足:與橢圓相交于不同兩點、,與直線相交于點.若橢圓上一動點滿足:,,且存在點,使得恒為定值,求的值.21.(12分)已知直線和的交點為P,求:(1)過點P且與直線垂直的直線l的方程;(2)以點P為圓心,且與直線相交所得弦長為12的圓的方程;(3)從下面①②兩個問題中選一個作答,①若直線l過點,且與兩坐標(biāo)軸的正半軸所圍成的三角形面積為,求直線l的方程②求圓心在直線上,與x軸相切,被直線截得的弦長的圓的方程注:如果選擇兩個問題分別作答,按第一個計分22.(10分)為了符合國家制定的工業(yè)廢氣排放標(biāo)準(zhǔn),某工廠在國家科研部門的支持下,進行技術(shù)攻關(guān),采用新工藝,對其排放的廢氣中的二氧化硫轉(zhuǎn)化為一種可利用的化工產(chǎn)品.已知該工廠每月的處理量最少為300噸,最多為600噸,月處理成本y(元)與月處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為,且每處理一噸二氧化硫得到可利用的化工產(chǎn)品價值為200元(1)該工廠每月處理量為多少噸時,才能使每噸的平均處理成本最低?(2)該工廠每月能否獲利?如果獲利,求出最大利潤:如果不獲利,則國家每月至少應(yīng)補貼多少元才能使工廠不虧損?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由等差數(shù)列的性質(zhì)可知,再代入等差數(shù)列的前項和公式求解.【詳解】數(shù)列{an}是等差數(shù)列,,那么,所以.故選:A.【點睛】本題考查等差數(shù)列的性質(zhì)和前項和,屬于基礎(chǔ)題型.2、B【解析】根據(jù)題意得到幾何體為半徑為1的球,長方體的體對角線為球的直徑時,長方體體積最大,設(shè)出長方體的長和寬,得到等量關(guān)系,利用基本不等式求解體積最大值.【詳解】由題意得:此幾何體為半徑為1的球,長方體為球的內(nèi)接長方體時,體積最大,此時長方體的體對角線為球的直徑,設(shè)長方體長為,寬為,則由題意得:,解得:,而長方體體積為,當(dāng)且僅當(dāng)時等號成立,故選:B3、A【解析】由題可得,則,可判斷,,即可得出結(jié)果.【詳解】前n項和有最大值,,,,,,,使得的最大值n為15.故選:A.【點睛】本題考查等差數(shù)列前n項和的有關(guān)判斷,解題的關(guān)鍵是得出.4、C【解析】設(shè),求導(dǎo)分析的單調(diào)性,又,,,即可得出答案【詳解】解:設(shè),則,又因為,所以,所以在上單調(diào)遞增,又,,,因為,所以,所以.故選:C5、C【解析】根據(jù)全概率公式即可求出【詳解】隨機抽取一人進行驗血,則其驗血結(jié)果為陽性的概率為0.0248故選:C6、B【解析】直接利用空間向量垂直的坐標(biāo)運算計算即可.【詳解】因為,所以,即,解得.故選:B7、C【解析】根據(jù)函數(shù)的定義域和特殊點,判斷出正確選項.【詳解】由,解得,也即函數(shù)的定義域為,由此排除A,B選項.當(dāng)時,,由此排除D選項.所以正確的為C選項.故選:C【點睛】本小題主要考查函數(shù)圖像識別,屬于基礎(chǔ)題.8、C【解析】取中點,連接,證明平面,得證,然后證明平面,得兩兩垂直,以為棱把三棱錐補成一個正方體,正方體的對角線是其外接球的直徑,而正方體的外接球也是正三棱錐的外接球,由此計算可得【詳解】取中點,連接,則,,,平面,所以平面,又平面,所以,D、E分別是SA、AB的中點,則,又,所以,,平面,所以平面,而平面,所以,,是正三棱錐,因此,因此可以為棱把三棱錐補成一個正方體,正方體的對角線是其外接球的直徑,而正方體的外接球也是正三棱錐的外接球,由,得,所以所求外接球直徑為,半徑為,球體積為故選:C9、C【解析】由題意可解出截面圓的半徑,然后利用勾股定理求解球心與截面圓圓心的距離【詳解】由截面圓的面積為可知,截面圓的半徑為,則球心到截面圓心的距離為故選:C【點睛】解答本題的關(guān)鍵點在于,球心與截面圓圓心的連線垂直于截面10、C【解析】根據(jù)題圖分析數(shù)據(jù),對選項逐一判斷【詳解】對于A,14天中有1,3,12,13共4日空氣質(zhì)量指數(shù)為“良”,故A正確對于B,從2日到5日空氣質(zhì)量指數(shù)越來越高,故空氣質(zhì)量越來越差,故B正確對于C,14個數(shù)據(jù)中位數(shù)為:,故C錯誤對于D,觀察折線圖可知D正確故選:C11、C【解析】根據(jù)新定義只需求銳角三角形外接圓的方程即可得解.【詳解】,,,為銳角三角形,的外接圓就是它的最小覆蓋圓,設(shè)外接圓方程為,則解得的最小覆蓋圓方程為,即,的最小覆蓋圓的半徑為.故選:C12、D【解析】利用幾何概型的概率公式,轉(zhuǎn)化為面積比直接求解.【詳解】以AB為直徑作圓,當(dāng)點M在圓外時,.所以事件“”發(fā)生的概率為.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求導(dǎo)得,進而根據(jù)題意在上有且只有一個變號零點,再根據(jù)零點的存在性定理求解.【詳解】解:,∵在區(qū)間上有且只有一個極值點,∴在上有且只有一個變號零點,∴,解得∴a的取值范圍是.故答案為:14、2【解析】求出圓錐軸截面頂角大小,判斷并求出所求面積最大值【詳解】如圖,是圓錐軸截面,是一條母線,設(shè)軸截面頂角為,因為圓錐的高為1,底面半徑為,所以,,所以,,設(shè)圓錐母線長為,則,截面的面積為,因為,所以時,故答案為:215、【解析】求導(dǎo),根據(jù)可得答案.【詳解】由題意,可得,令,即,解得,即函數(shù)的遞減區(qū)間為.故答案為:.【點睛】本題考查運用導(dǎo)函數(shù)的符號,研究函數(shù)的單調(diào)性,屬于基礎(chǔ)題.16、①②.【解析】由題設(shè)可得,應(yīng)用累加法求的通項公式,由基本不等式及確定的最小值,再應(yīng)用裂項求和法求的前20和.【詳解】由題設(shè),,∴,…,,又,∴將上式累加可得:,則,∴,當(dāng)且僅當(dāng)時等號成立,又,故最小,則或5,當(dāng)時,;當(dāng)時,;∴的最小值為.由上知:,∴前20項和為.故答案為:8,.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1),所以PA與AB所成的銳角或直角等于PA與CD所成角,然后過P在平面PAB內(nèi)作,可得平面ABCD,從而可求出答案.(2)可證平面PAB,過B在平面PAB內(nèi)作,連結(jié)CF,則是二面角的平面角,從而可求解.【小問1詳解】因為,所以PA與AB所成的銳角或直角等于PA與CD所成角,可知,是正三角形.過P在平面PAB內(nèi)作,垂足為E,因為平面平面ABCD,所以平面ABCD,是直線PD與平面ABCD所成角.在正中,,,所以,故直線PD與平面ABCD所成角的正弦值為.【小問2詳解】因為,平面平面ABCD,平面平面ABCD又平面ABCD,所以平面PAB.又平面PAB.則過B在平面PAB內(nèi)作,垂足為F,連結(jié)CF,又,則平面,又平面所以,所以是二面角的平面角.因為,,所以,從而所以二面角正弦值為.18、(1)證明見解析;(2).【解析】(1)由中位線的性質(zhì)可得、、,再由線面平行的判定可證平面PEF、平面PEF,最后根據(jù)面面平行的判定證明結(jié)論.(2)應(yīng)用勾股定理、等邊三角形的性質(zhì)、面面和線面垂直的性質(zhì)可證、、兩兩垂直,構(gòu)建空間直角坐標(biāo)系,求面BPC、面PCA的法向量,再應(yīng)用空間向量夾角的坐標(biāo)表示求二面角的余弦值.【小問1詳解】因為D,H分別是PA,PC的中點,所以因為E,F(xiàn)分別是AB,BC的中點,所以,綜上,,又平面PEF,平面PEF,所以平面PEF由題意,G是CF的中點,又H是PC的中點,所以,又平面PEF,平面PEF,所以平面PEF由,HG,平面DHG,所以平面平面DHG【小問2詳解】在△ABC中,AB=4,AC=2,,所以,所以,又,則因為△PAB為等邊三角形,點E為AB的中點,所以,又平面平面ABC,平面平面ABC=AB,所以平面ABC,面ABC,故綜上,以E為坐標(biāo)原點,以EB,EF,EP所在直線分別為x,y,z軸,建立空間直角坐標(biāo)系,如圖所示,有,,,,則,,設(shè)平面BPC的法向量為,則,令,則設(shè)平面PCA的法向量為,則,令,則所以.由圖知,二面角的平面角為銳角,所以二面角的余弦值為19、(1);(2)沒有.【解析】(1)設(shè)機器鼠位置為點,由題意可得,即,可得的軌跡為以、為焦點的雙曲線的右支,分析取值,即得解雙曲線的方程,由可得P點坐標(biāo).(2)轉(zhuǎn)化機器鼠與直線最近的距離為與直線平行的直線與雙曲線相切時,平行線間的距離,設(shè)的方程為,與雙曲線聯(lián)立,求出的值,再利用平行線間的距離公式,即得解【詳解】(1)設(shè)機器鼠位置為點,、,由題意可得,即,可得的軌跡為以、為焦點的雙曲線的右支,設(shè)其方程為:(,),則、、,則的軌跡方程為:(),時刻時,,即,可得機器鼠所在位置的坐標(biāo)為;(2)由題意,直線,設(shè)直線的平行線的方程為,聯(lián)立,可得:,,解得,又,∴,∴,即:與雙曲線的右支相切,切點即為雙曲線右支上距離最近的點,此時與的距離為,即機器鼠距離最小的距離為,則機器鼠保持目前運動軌跡不變,沒有“被抓”的風(fēng)險.20、(1)(2)【解析】(1)先求得橢圓的,代入公式即可求得橢圓的方程;(2)以設(shè)而不求的方法得到兩根和,再由條件,得到四邊形為平行四邊形,并以向量方式進行等價轉(zhuǎn)化,再與恒為定值進行聯(lián)系,即可求得的值.【小問1詳解】由條件可設(shè)橢圓:,因為拋物線:的焦點為,所以,解得因為橢圓離心率為,所以,則,故橢圓的方程為【小問2詳解】設(shè)直線:,,,把直線的方程代入橢圓的方程,可得,所以,因為,,所以四邊形為平行四邊形,得,即,得由在橢圓上可得,,即因為,又所以,所以將代入得,所以,即.【點睛】數(shù)形結(jié)合是數(shù)學(xué)解題中常用的思想方法,數(shù)形結(jié)合的思想可以使某些抽象的數(shù)學(xué)問題直觀化、生動化,能夠變抽象思維為形象思維,有助于把握數(shù)學(xué)問題的本質(zhì);另外,由于使用了數(shù)形結(jié)合的方法,很多問題便迎刃而解,且解法簡捷。21、(1)(2)(3)答案見解析【解析】(1)聯(lián)立方程組求得交點的坐標(biāo),結(jié)合直線與直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論