河南省開封市重點名校2024屆數學高二上期末統(tǒng)考試題含解析_第1頁
河南省開封市重點名校2024屆數學高二上期末統(tǒng)考試題含解析_第2頁
河南省開封市重點名校2024屆數學高二上期末統(tǒng)考試題含解析_第3頁
河南省開封市重點名校2024屆數學高二上期末統(tǒng)考試題含解析_第4頁
河南省開封市重點名校2024屆數學高二上期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河南省開封市重點名校2024屆數學高二上期末統(tǒng)考試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是雙曲線C的兩個焦點,P為C上一點,且,則C的離心率為()A. B.C. D.2.拋物線y2=4x的焦點坐標是A.(0,2) B.(0,1)C.(2,0) D.(1,0)3.某汽車制造廠分別從A,B兩類輪胎中各隨機抽取了6個進行測試,下面列出了每一個輪胎行駛的最遠里程(單位:)A類輪胎:94,96,99,99,105,107B類輪胎:95,95,98,99,104,109根據以上數據,下列說法正確的是()A.A類輪胎行駛的最遠里程的眾數小于B類輪胎行駛的最遠里程的眾數B.A類輪胎行駛的最遠里程的極差等于B類輪胎行駛的最遠里程的極差C.A類輪胎行駛的最遠里程的平均數大于B類輪胎行駛的最遠里程的平均數D.A類輪胎的性能更加穩(wěn)定4.世界上最早在理論上計算出“十二平均律”的是我國明代杰出的律學家朱載堉,他當時稱這種律制為“新法密率”十二平均律將一個純八度音程分成十二份,依次得到十三個單音,從第二個單音起,每一個單音的頻率與它前一個單音的頻率的比都相等,且最后一個單音是第一個單音頻率的2倍.已知第十個單音的頻率,則與第四個單音的頻率最接近的是()A.880 B.622C.311 D.2205.已知數列的前項和為,當時,()A.11 B.20C.33 D.356.若關于一元二次不等式的解集為,則實數的取值范圍是()A. B.C. D.7.已知P是橢圓上的一點,是橢圓的兩個焦點且,則的面積是()A. B.2C. D.18.如圖所示,正方體的棱長為2,以其所有面的中心為頂點的多面體的表面積為()A. B.C.8 D.129.在等差數列{an}中,a1=1,,則a7=()A.13 B.14C.15 D.1610.直線的一個方向向量為,則它的斜率為()A. B.C. D.11.平行六面體中,若,則()A. B.1C. D.12.已知x>0、y>0,且1,若恒成立,則實數m的取值范圍為()A.(1,9) B.(9,1)C.[9,1] D.(∞,1)∪(9,+∞)二、填空題:本題共4小題,每小題5分,共20分。13.已知直線與直線平行,則實數______14.若函數的遞增區(qū)間是,則實數______.15.若拋物線經過點,則__________.16.已知,動點滿足,則點的軌跡方程為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)隨著生活條件的改善,人們健身意識的增強,健身器械比較暢銷,某商家為了解某種健身器械如何定價可以獲得最大利潤,現(xiàn)對這種健身器械進行試銷售.統(tǒng)計后得到其單價x(單位:百元)與銷量y(單位:個)的相關數據如下表:單價x(百元/個)3035404550日銷售量y(個)1401301109080(1)已知銷量y與單價x具有線性相關關系,求y關于x的線性回歸方程;(2)若每個健身器械的成本為25百元,試銷售結束后,請利用(1)中所求的線性回歸方程確定單價為多少百元時,銷售利潤最大?(結果保留到整數),附:對于一組數據,其回歸直線的斜率和截距的最小二乘估計分別為.參考數據:.18.(12分)如圖,在四棱錐中,面ABCD,,且,,,,,N為PD的中點.(1)求證:平面PBC;(2)在線段PD上是否存在一點M,使得直線CM與平面PBC所成角的正弦值是.若存在,求出的值,若不存在,說明理由.19.(12分)已知橢圓的左、右焦點分別為,,橢圓上一點滿足,且的面積為(1)求橢圓的方程;(2)直線與橢圓有且只有一個公共點,過點作直線的垂線.設直線交軸于,交軸于,且點,求的軌跡方程20.(12分)如圖,在半徑為6m的圓形O為圓心鋁皮上截取一塊矩形材料OABC,其中點B在圓弧上,點A,C在兩半徑上,現(xiàn)將此矩形鋁皮OABC卷成一個以AB為母線的圓柱形罐子的側面不計剪裁和拼接損耗,設矩形的邊長|AB|xm,圓柱的體積為Vm3.(1)寫出體積V關于x的函數關系式,并指出定義域;(2)當x為何值時,才能使做出的圓柱形罐子的體積V最大最大體積是多少?21.(12分)已知為各項均為正數的等比數列,且,(1)求數列的通項公式;(2)令,求數列前n項和22.(10分)如圖,在直三棱柱中,,,D為的中點(1)求證:平面;(2)求平面與平面的夾角的余弦值;(3)若E為的中點,求與所成的角

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據雙曲線的定義及條件,表示出,結合余弦定理可得答案.【詳解】因為,由雙曲線的定義可得,所以,;因為,由余弦定理可得,整理可得,所以,即.故選:A【點睛】關鍵點睛:雙曲線的定義是入手點,利用余弦定理建立間的等量關系是求解的關鍵.2、D【解析】的焦點坐標為,故選D.【考點】拋物線的性質【名師點睛】本題考查拋物線的定義.解析幾何是中學數學的一個重要分支,圓錐曲線是解析幾何的重要內容,它們的定義、標準方程、簡單幾何性質是我們要重點掌握的內容,一定要熟記掌握3、D【解析】根據眾數、極差、平均數和方差的定義以及計算公式即可求解.【詳解】解:對A:A類輪胎行駛的最遠里程的眾數為99,B類輪胎行駛的最遠里程的眾數為95,選項A錯誤;對B:A類輪胎行駛的最遠里程的極差為13,B類輪胎行駛的最遠里程的極差為14,選項B錯誤對C:A類輪胎行駛的最遠里程的平均數為,B類輪胎行駛的最遠里程的平均數為,選項C錯誤對D:A類輪胎行駛的最遠里程的方差為,B類輪胎行駛的最遠里程的方差為,故A類輪胎的性能更加穩(wěn)定,選項D正確故選:D.4、C【解析】依題意,每一個單音的頻率構成一個等比數列,由,算出公比,結合,即可求出.【詳解】設第一個單音的頻率為,則最后一個單音的頻率為,由題意知,且每一個單音的頻率構成一個等比數列,設公比為,則,解得:又,則與第四個單音的頻率最接近的是311,故選:C【點睛】關鍵點點睛:本題考查等比數列通項公式的運算,解題的關鍵是分析題意將其轉化為等比數列的知識,考查學生的計算能力,屬于基礎題.5、B【解析】由數列的性質可得,計算可得到答案.【詳解】由題意,.故答案為B.【點睛】本題考查了數列的前n項和的性質,屬于基礎題.6、B【解析】結合判別式求得的取值范圍.【詳解】由于關于的一元二次不等式的解集為,所以,解得,所以實數的取值范圍是.故選:B7、A【解析】設,先求出m、n,再利用面積公式即可求解.【詳解】在中,設,則,解得:.因為,所以,所以的面積是.故選:A8、B【解析】首先確定幾何體的空間結構特征,然后求解其表面積即可.【詳解】由題意知,該幾何體是一個由8個全等的正三角形圍成的多面體,正三角形的邊長為:,正三角形邊上的一條高為:,所以一個正三角形的面積為:,所以多面體的表面積為:.故選:B9、A【解析】利用等差數列的基本量,即可求解.【詳解】設等差數列的公差為,,解得:,則.故選:A10、A【解析】根據的方向向量求得斜率.【詳解】且是直線的方向向量,.故選:A11、D【解析】根據空間向量的運算,表示出,和已知比較可求得的值,進而求得答案.【詳解】在平行六面體中,有,故由題意可知:,即,所以,故選:D.12、B【解析】應用基本不等式“1”的代換求的最小值,注意等號成立條件,再根據題設不等式恒成立有,解一元二次不等式求解集即可.【詳解】由題設,,當且僅當時等號成立,∴要使恒成立,只需,故,∴.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分類討論,兩種情況,結合直線平行的知識得出實數.【詳解】當時,直線與直線垂直;當時,,則且,解得.故答案為:14、【解析】求得二次函數的單調增區(qū)間,即可求得參數的值.【詳解】因為二次函數開口向上,對稱軸為,故其單調增區(qū)間為,又由題可知:其遞增區(qū)間是,故.故答案為:.15、2【解析】將點代入拋物線方程即可得出答案.【詳解】解:因為拋物線經過點,所以,即.故答案為:2.16、【解析】表示出、,根據題意,列出等式,化簡整理即可得答案.【詳解】,由題意得,所以整理可得,即.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)確定單價為50百元時,銷售利潤最大.【解析】(1)根據參考公式和數據求出,進而求出線性回歸方程;(2)設出定價,結合(1)求出利潤,進而通過二次函數的性質求得答案.【小問1詳解】由題意,,則,,結合參考數據可得,,所以線性回歸方程為.【小問2詳解】設定價為x百元,利潤為,則,由題意,則(百元)時,最大.故確定單價為50百元時,銷售利潤最大.18、(1)證明見解析(2)存在,且【解析】(1)建立空間直角坐標系,利用向量法證得平面.(2)設,利用直線與平面所成角的正弦值列方程,化簡求得.【小問1詳解】設是的中點,連接,由于,所以四邊形是矩形,所以,由于平面,所以,以為空間坐標原點建立如圖所示空間直角坐標系,,,,設平面的法向量為,則,故可設.,且平面,所以平面.【小問2詳解】,設,則,,,設直線與平面所成角為,則,,兩邊平方并化簡得,解得或(舍去).所以存在,使直線與平面所成角的正弦值是,且.19、(1);(2).【解析】(1)利用可得,由橢圓關系可求得,進而得到橢圓方程;(2)將與橢圓方程聯(lián)立可得,得,結合韋達定理可確定點坐標,由此可得方程,進而得到,化簡整理即可得到所求軌跡方程.【小問1詳解】由焦點坐標可知:;,即,,,解得:,,解得:(舍)或,,橢圓的方程為:;【小問2詳解】由得:,,整理可得:;,解得:,,則,令,解得:;令,解得:;,即,又,,則的軌跡方程為:.【點睛】思路點睛:本題考查動點軌跡方程的求解問題,解題基本思路是能夠利用變量表示出所求點的坐標,根據坐標之間關系,化簡整理消掉變量得到所求軌跡方程;易錯點是忽略題目中的限制條件,軌跡中出現(xiàn)多余的點.20、(1),;(2)時,最大值為m3.【解析】(1)連接,在中,由,利用勾股定理可得,設圓柱底面半徑為,求出.利用(其中即可得出;(2)利用導數,求出V的單調性,即可得出結論【小問1詳解】連接,在中,,,設圓柱底面半徑為,則,即,,其中【小問2詳解】由及,得,列表如下:,0↗極大值↘∴當時,有極大值,也是最大值為m321、(1)(2)【解析】(1)利用基本量法,求出首項和公比,即可求解.(2)利用錯位相減法,即可求解.【小問1詳解】設等比數列公比為【小問2詳解】22、(1)證明見解析(2)(3)【解析】(1)連接,交于O,連接OD,根據中位線的性質,可證,根據線面平行的判定定理,即可得證;(2)如圖建系,求得各點坐標,進而可求得平面與平面法向量,根據二面角的向量求法,即可得答案;(3)求得坐標,根據線線角的向量求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論