




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
河北省遵化市堡子店中學2023-2024學年高二上數(shù)學期末檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.橢圓的兩焦點之間的距離為A. B.C. D.2.已知橢圓方程為,點在橢圓上,右焦點為F,過原點的直線與橢圓交于A,B兩點,若,則橢圓的方程為()A. B.C. D.3.如圖,四棱錐的底面是矩形,設,,,是棱上一點,且,則()A. B.C. D.4.如果直線與直線垂直,那么的值為()A. B.C. D.25.直線分別與軸,軸交于,兩點,點在圓上,則面積的取值范圍是A. B.C. D.6.設雙曲線的離心率為,則下列命題中是真命題的為()A.越大,雙曲線開口越小 B.越小,雙曲線開口越大C.越大,雙曲線開口越大 D.越小,雙曲線開口越大7.下列命題中,真命題的個數(shù)為()(1)是為雙曲線的充要條件;(2)若,則;(3)若,,則;(4)橢圓上的點距點最近的距離為;A.個 B.個C.個 D.個8.在正方體中,下列幾種說法不正確的是A. B.B1C與BD所成的角為60°C.二面角的平面角為 D.與平面ABCD所成的角為9.《九章算術》第三章“衰分”介紹比例分配問題:“衰分”是按比例遞減分配的意思,通常稱遞減的比例(即百分比)為“衰分比”.如:甲、乙、丙、丁分別分得,,,,遞減的比例為,那么“衰分比”就等于,今共有糧石,按甲、乙、丙、丁的順序進行“衰分”,已知乙分得石,甲、丙所得之和為石,則“衰分比”為()A. B.C. D.10.已知雙曲線的左、右焦點分別為,,過作圓的切線分別交雙曲線的左、右兩支于,,且,則雙曲線的漸近線方程為()A. B.C. D.11.雙曲線的左焦點到其漸近線的距離是()A. B.C. D.12.已知分別是雙曲線的左、右焦點,動點P在雙曲線的左支上,點Q為圓上一動點,則的最小值為()A.6 B.7C. D.5二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,,則___________.14.矩形ABCD中,,在CD邊上任取一點M,則的最大邊是AB的概率為______15.若拋物線的焦點與橢圓的右焦點重合,則實數(shù)m的值為______.16.某部門計劃對某路段進行限速,為調(diào)查限速60km/h是否合理,對通過該路段的300輛汽車的車速進行檢測,將所得數(shù)據(jù)按,,,分組,繪制成如圖所示頻率分布直方圖.則________;這300輛汽車中車速低于限速60km/h的汽車有______輛.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系xOy中,已知橢圓C:的焦距為4,且過點.(1)求橢圓C的方程;(2)設橢圓C的上頂點為B,右焦點為F,直線l與橢圓交于M,N兩點,問是否存在直線l,使得F為的垂心(高的交點),若存在,求出直線l的方程:若不存在,請說明理由.18.(12分)已知.(1)討論的單調(diào)性;(2)當有最大值,且最大值大于時,求取值范圍.19.(12分)已知橢圓:的左、右焦點分別為,,離心率為,且過點.(1)求橢圓的標準方程;(2)若過點的直線與橢圓相交于,兩點(A、B非橢圓頂點),求的最大值.20.(12分)在中,內(nèi)角A、B、C的對邊分別為a、b、c,滿足(1)求A的大?。唬?)若,的面積為,求的周長21.(12分)如圖,在直三棱柱中,,E、F分別是、的中點(1)求證:平面;(2)求證:平面22.(10分)已知等差數(shù)列的前項和為,.(1)求數(shù)列的通項公式;(2)求的最大值及相應的的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)題意,由于橢圓的方程為,故可知長半軸的長為,那么可知兩個焦點的坐標為,因此可知兩焦點之間的距離為,故選C考點:橢圓的簡單幾何性質(zhì)點評:解決的關鍵是將方程變?yōu)闃藴适?,然后結合性質(zhì)得到結論,屬于基礎題2、A【解析】根據(jù)橢圓的性質(zhì)可得,則橢圓方程可求.【詳解】由點在橢圓上得,由橢圓的對稱性可得,則,故橢圓方程為.故選:A.3、B【解析】根據(jù)空間向量基本定理求解【詳解】由已知故選:B4、A【解析】根據(jù)兩條直線垂直列方程,化簡求得的值.【詳解】由于直線與直線垂直,所以.故選:A5、A【解析】分析:先求出A,B兩點坐標得到再計算圓心到直線距離,得到點P到直線距離范圍,由面積公式計算即可詳解:直線分別與軸,軸交于,兩點,則點P在圓上圓心為(2,0),則圓心到直線距離故點P到直線的距離的范圍為則故答案選A.點睛:本題主要考查直線與圓,考查了點到直線的距離公式,三角形的面積公式,屬于中檔題6、C【解析】根據(jù)雙曲線的性質(zhì)結合離心率對雙曲線開口大小的影響即可得解.【詳解】解:對于A,越大,雙曲線開口越大,故A錯誤;對于B,越小,雙曲線開口越小,故B錯誤;對于C,由,越大,則越大,雙曲線開口越大,故C正確;對于D,越小,則越小,雙曲線開口越小,故D錯誤.故選:C.7、A【解析】利用方程表示雙曲線求出的取值范圍,利用集合的包含關系可判斷(1)的正誤;直接判斷命題的正誤,可判斷(2)的正誤;利用空間向量垂直的坐標表示可判斷(3)的正誤;利用橢圓的有界性可判斷(4)的正誤.【詳解】對于(1),若曲線為雙曲線,則,即,解得或,因為或,因此,是為雙曲線的充分不必要條件,(1)錯;對于(2),若,則或,(2)錯;對于(3),,則,(3)對;對于(4),設點為橢圓上一點,則且,則點到點的距離為,(4)錯.故選:A.8、D【解析】在正方體中,利用線面關系逐一判斷即可.【詳解】解:對于A,連接AC,則AC⊥BD,A1C1∥AC,∴A1C1⊥BD,故A正確;對于B,∵B1C∥D,即B1C與BD所成的角為∠DB,連接△DB為等邊三角形,∴B1C與BD所成的角為60°,故B正確;對于C,∵BC⊥平面A1ABB1,A1B?平面A1ABB1,∴BC⊥A1B,∵AB⊥BC,平面A1BC∩平面BCD=BC,A1B?平面A1BC,AB?平面BCD,∴∠ABA1是二面角A1﹣BC﹣D的平面角,∵△A1AB是等腰直角三角形,∴∠ABA1=45°,故C正確;對于D,∵C1C⊥平面ABCD,AC1∩平面ABCD=A,∴∠C1AC是AC1與平面ABCD所成的角,∵AC≠C1C,∴∠C1AC≠45°,故D錯誤故選D【點睛】本題考查了線面的空間位置關系及空間角,做出圖形分析是關鍵,考查推理能力與空間想象能力9、A【解析】根據(jù)題意,設衰分比為,甲分到石,,然后可得和,解出、的值即可【詳解】根據(jù)題意,設衰分比為,甲分到石,,又由今共有糧食石,按甲、乙、丙、丁的順序進行“衰分”,已知乙分得90石,甲、丙所得之和為164石,則,,解得:,,故選:A10、D【解析】直線的斜率為,計算,,利用余弦定理得到,化簡知,得到答案【詳解】由題意知直線的斜率為,,又,由雙曲線定義知,,.由余弦定理:,,即,即,解得.故雙曲線漸近線的方程為.故答案選D【點睛】本題考查了雙曲線的漸近線,與圓的關系,意在考查學生的綜合應用能力和計算能力.11、A【解析】求出雙曲線焦點坐標與漸近線方程,利用點到直線的距離公式可求得結果.【詳解】在雙曲線中,,,,所以,該雙曲線的左焦點坐標為,漸近線方程為,即,因,該雙曲線的左焦點到漸近線的距離為.故選:A12、A【解析】由雙曲線的定義及三角形的幾何性質(zhì)可求解.【詳解】如圖,圓的圓心為,半徑為1,,,當,,三點共線時,最小,最小值為,而,所以故選:A二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】由空間向量數(shù)量積的坐標運算可得答案.【詳解】因為,,,所以,.故答案為:2.14、【解析】先利用勾股定理得出滿足條件的長度,再結合幾何概型的概率公式得出答案.【詳解】設,當時,,;當時,,所以當?shù)降木嚯x都大于時,的最大邊是AB,所以的最大邊是AB的概率為.故答案為:15、【解析】分別求出橢圓和拋物線的焦點坐標即可出值.【詳解】由橢圓方程可知,,,則,即橢圓的右焦點的坐標為,拋物線的焦點坐標為,∵拋物線的焦點與橢圓的右焦點重合,∴,即,故答案為:.16、①.②.【解析】根據(jù)個小矩形面積之和為1即可求出的值;根據(jù)頻率分布直方圖可以求出車速低于限速60km/h的頻率,從而可求出汽車有多少輛【詳解】由解得:這300輛汽車中車速低于限速60km/h的汽車有故答案為:;三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)存在:【解析】(1)根據(jù)題意,列出關于a,b,c的關系,計算求值,即可得答案.(2)由(1)可得B、F點坐標,可得直線BF的斜率,根據(jù)F為垂心,可得,可得直線l的斜率,設出直線l的方程,與橢圓聯(lián)立,根據(jù)韋達定理,結合垂心的性質(zhì),列式求解,即可得答案.【小問1詳解】因為焦距為4,所以,即,又過點,所以,又,聯(lián)立求得,所以橢圓C的方程為【小問2詳解】由(1)可得,所以,因為F為垂心,直線BF與直線l垂直,所以,則,即直線l的斜率為1,設直線l的方程為,,與橢圓聯(lián)立得,,所以,因為F為垂心,所以直線BN與直線MF垂直,所以,即,又,所以,即,所以,解得或,由,解得,又時,直線l過點B,不符合題意,所以,所以存在直線l:,滿足題意.18、(1)時,在是單調(diào)遞增;時,在單調(diào)遞增,在單調(diào)遞減.(2).【解析】(Ⅰ)由,可分,兩種情況來討論;(II)由(I)知當時在無最大值,當時最大值為因此.令,則在是增函數(shù),當時,,當時,因此a的取值范圍是.試題解析:(Ⅰ)的定義域為,,若,則,在是單調(diào)遞增;若,則當時,當時,所以在單調(diào)遞增,在單調(diào)遞減.(Ⅱ)由(Ⅰ)知當時在無最大值,當時在取得最大值,最大值為因此.令,則在是增函數(shù),,于是,當時,,當時,因此a取值范圍是.考點:本題主要考查導數(shù)在研究函數(shù)性質(zhì)方面的應用及分類討論思想.19、(1)(2)【解析】(1)根據(jù)離心率和點在橢圓上建立方程,結合,然后解出方程即可(2)設直線的斜率為,聯(lián)立直線與橢圓的方程,然后利用韋達定理表示出,兩點的坐標關系,并表示出為直線斜率的函數(shù),然后求出的最大值【小問1詳解】由橢圓過點,則有:由可得:解得:則橢圓的方程為:【小問2詳解】由(1)得,,已知直線不過橢圓長軸頂點則直線的斜率不為,設直線的方程為:設,,聯(lián)立直線方程和橢圓方程整理可得:故是恒成立的根據(jù)韋達定理可得:,則有:由,可得:所以的最大值為:20、(1)(2)【解析】(1)通過正弦定理將邊化為角的關系,可得,進而可得結果;(2)由面積公式得,結合余弦定理得,進而得結果.【小問1詳解】∵∴由正弦定理,得∴∵,∴,故【小問2詳解】由(1)知,∵∴∵由余弦定理知,∴,故∴,故∴的周長為21、(1)證明見解析;(2)證明見解析.【解析】(1)連接,交于點M,連接ME,則M為中點.根據(jù)三角形的中位線定理和平行四邊形的判斷和性質(zhì)可證得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外貿(mào)英語寫作第一章課件
- 雙十一汽車電商解密
- 南陽職業(yè)學院《土建基礎與工程技術經(jīng)濟》2023-2024學年第二學期期末試卷
- 遼寧商貿(mào)職業(yè)學院《江蘇民歌欣賞與演唱》2023-2024學年第一學期期末試卷
- 廈門大學嘉庚學院《設計與開發(fā)課程設計》2023-2024學年第二學期期末試卷
- 山西省運城市實驗中學2025年初三下學期精英聯(lián)賽語文試題含解析
- 四川文軒職業(yè)學院《中國文學作品選讀》2023-2024學年第二學期期末試卷
- 四川南充市嘉陵區(qū)2024-2025學年初三5月月考試題物理試題含解析
- 山東省齊魯教科研協(xié)作體2024-2025學年高三第十次模擬考試語文試題試卷含解析
- 江西省南昌市新建區(qū)重點達標名校2025屆初三年級3月聯(lián)合考試化學試題含解析
- 2025年保健食品從業(yè)人員培訓考試試題
- 2025年貴州盤江精煤股份有限公司招聘筆試參考題庫含答案解析
- 2025年春新北師大版物理八年級下冊課件 第九章 機械和功 第一節(jié) 杠桿 第1課時 杠桿及其平衡條件
- GB/T 26718-2024城市軌道交通安全防范系統(tǒng)技術要求
- 救護車租賃合同模板
- 2024-2030年中國海外醫(yī)療中介服務行業(yè)運行現(xiàn)狀及投資潛力分析報告
- 餐飲業(yè)供應鏈管理與采購策略
- 幼兒園應急疏散演練
- 《家庭安全用電培訓》課件
- 《胸腔積液》課件
- 醫(yī)院改造項目合同模板
評論
0/150
提交評論