




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第04講3.2.2雙曲線的簡單幾何性質(zhì)課程標(biāo)準(zhǔn)學(xué)習(xí)目標(biāo)①掌握雙曲線的簡單幾何性質(zhì),了解雙曲線中a,b,c,e的幾何意義及范圍。②會(huì)根據(jù)雙曲線的方程解決雙曲線的幾何性質(zhì),會(huì)用雙曲線的幾何意義解決相關(guān)問題。通過本節(jié)課的學(xué)習(xí),要求掌握雙曲線的幾何量a,b,c,e的意義,會(huì)利用幾何量之間的關(guān)系,求相關(guān)幾何量的大小,會(huì)利用雙曲線的幾何性質(zhì)解決與雙曲線有關(guān)的點(diǎn)、弦、周長、面積等問題知識(shí)點(diǎn)01:雙曲線的簡單幾何性質(zhì)標(biāo)準(zhǔn)方程SKIPIF1<0(SKIPIF1<0)SKIPIF1<0(SKIPIF1<0)圖形性質(zhì)范圍SKIPIF1<0或SKIPIF1<0SKIPIF1<0或SKIPIF1<0對(duì)稱性對(duì)稱軸:坐標(biāo)軸;對(duì)稱中心:原點(diǎn)頂點(diǎn)坐標(biāo)SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0漸近線SKIPIF1<0SKIPIF1<0離心率SKIPIF1<0,SKIPIF1<0,a,b,c間的關(guān)系SKIPIF1<0【即學(xué)即練1】(2023秋·高二課時(shí)練習(xí))雙曲線SKIPIF1<0的焦點(diǎn)坐標(biāo)為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】因?yàn)殡p曲線方程為SKIPIF1<0,化為標(biāo)準(zhǔn)方程為:SKIPIF1<0,所以SKIPIF1<0,由于焦點(diǎn)在SKIPIF1<0軸上,所以焦點(diǎn)坐標(biāo)為:SKIPIF1<0.故選:C.知識(shí)點(diǎn)02:等軸雙曲線SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)當(dāng)SKIPIF1<0時(shí)稱雙曲線為等軸雙曲線①SKIPIF1<0;②離心率SKIPIF1<0;③兩漸近線互相垂直,分別為SKIPIF1<0;④等軸雙曲線的方程SKIPIF1<0,SKIPIF1<0;【即學(xué)即練2】(2023春·四川南充·高二四川省南充高級(jí)中學(xué)校考階段練習(xí))經(jīng)過點(diǎn)SKIPIF1<0且對(duì)稱軸都在坐標(biāo)軸上的等軸雙曲線的方程為【答案】SKIPIF1<0【詳解】設(shè)所求雙曲線方程為:SKIPIF1<0,SKIPIF1<0雙曲線經(jīng)過點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0所求雙曲線方程為:SKIPIF1<0.故答案為:SKIPIF1<0.知識(shí)點(diǎn)03:直線與雙曲線的位置關(guān)系1、代數(shù)法:設(shè)直線SKIPIF1<0,雙曲線SKIPIF1<0聯(lián)立解得:SKIPIF1<0(1)SKIPIF1<0時(shí),SKIPIF1<0,直線與雙曲線交于兩點(diǎn)(左支一個(gè)點(diǎn)右支一個(gè)點(diǎn));SKIPIF1<0,SKIPIF1<0,或k不存在時(shí),直線與雙曲線沒有交點(diǎn);(2)SKIPIF1<0時(shí),SKIPIF1<0存在時(shí),若SKIPIF1<0,SKIPIF1<0,直線與雙曲線漸近線平行,直線與雙曲線相交于一點(diǎn);若SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0時(shí),SKIPIF1<0,直線與雙曲線相交于兩點(diǎn);SKIPIF1<0時(shí),SKIPIF1<0,直線與雙曲線相離,沒有交點(diǎn);SKIPIF1<0時(shí)SKIPIF1<0,SKIPIF1<0直線與雙曲線有一個(gè)交點(diǎn);相切SKIPIF1<0不存在,SKIPIF1<0時(shí),直線與雙曲線沒有交點(diǎn);SKIPIF1<0直線與雙曲線相交于兩點(diǎn);【即學(xué)即練3】(2023·全國·高三專題練習(xí))直線SKIPIF1<0與雙曲線SKIPIF1<0上支的交點(diǎn)個(gè)數(shù)為.【答案】2【詳解】由SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以直線SKIPIF1<0與雙曲線上支的交點(diǎn)個(gè)數(shù)為2.故答案為:2知識(shí)點(diǎn)04:弦長公式1、直線被雙曲線截得的弦長公式,設(shè)直線與橢圓交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),則SKIPIF1<0SKIPIF1<0為直線斜率2、通徑的定義:過焦點(diǎn)且垂直于實(shí)軸的直線與雙曲線相交于SKIPIF1<0、SKIPIF1<0兩點(diǎn),則弦長SKIPIF1<0.【即學(xué)即練4】(2023·高二課時(shí)練習(xí))過雙曲線SKIPIF1<0的右焦點(diǎn)作傾斜角為30°的直線l,直線l與雙曲線交于不同的兩點(diǎn)A,B,則AB的長為.【答案】SKIPIF1<0【詳解】雙曲線SKIPIF1<0的右焦點(diǎn)為SKIPIF1<0,所以直線l的方程為SKIPIF1<0.由SKIPIF1<0,得SKIPIF1<0.設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0知識(shí)點(diǎn)05:雙曲線與漸近線的關(guān)系1、若雙曲線方程為SKIPIF1<0SKIPIF1<0漸近線方程:SKIPIF1<0SKIPIF1<02、若雙曲線方程為SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)SKIPIF1<0漸近線方程:SKIPIF1<0SKIPIF1<03、若漸近線方程為SKIPIF1<0,則雙曲線方程可設(shè)為SKIPIF1<0,4、若雙曲線與SKIPIF1<0有公共漸近線,則雙曲線的方程可設(shè)為SKIPIF1<0(SKIPIF1<0,焦點(diǎn)在SKIPIF1<0軸上,SKIPIF1<0,焦點(diǎn)在SKIPIF1<0軸上)【即學(xué)即練5】(2023·四川成都·??家荒#┮阎行脑谠c(diǎn),焦點(diǎn)在y軸上的雙曲線的離心率為SKIPIF1<0,則它的漸近線方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】設(shè)雙曲線的方程為SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以漸近線方程為SKIPIF1<0.故選:C.知識(shí)點(diǎn)06:雙曲線中點(diǎn)弦的斜率公式設(shè)SKIPIF1<0為雙曲線SKIPIF1<0弦SKIPIF1<0(SKIPIF1<0不平行SKIPIF1<0軸)的中點(diǎn),則有SKIPIF1<0證明:設(shè)SKIPIF1<0,SKIPIF1<0,則有SKIPIF1<0,SKIPIF1<0兩式相減得:SKIPIF1<0整理得:SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0是弦SKIPIF1<0的中點(diǎn),所以:SKIPIF1<0,所以SKIPIF1<0【即學(xué)即練6】(2023·全國·高三專題練習(xí))過點(diǎn)SKIPIF1<0的直線SKIPIF1<0與雙曲線SKIPIF1<0相交于SKIPIF1<0兩點(diǎn),若SKIPIF1<0是線段SKIPIF1<0的中點(diǎn),則直線SKIPIF1<0的方程是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】解:設(shè)SKIPIF1<0,則SKIPIF1<0,兩式相減得直線的斜率為SKIPIF1<0,又直線SKIPIF1<0過點(diǎn)SKIPIF1<0,所以直線SKIPIF1<0的方程為SKIPIF1<0,經(jīng)檢驗(yàn)此時(shí)SKIPIF1<0與雙曲線有兩個(gè)交點(diǎn).故選:A題型01由雙曲線的方程求幾何性質(zhì)【典例1】(多選)(2023·海南·校考模擬預(yù)測(cè))下列關(guān)于雙曲線SKIPIF1<0說法正確的是(
)A.實(shí)軸長為6 B.與雙曲線SKIPIF1<0有相同的漸近線C.焦點(diǎn)到漸近線距離為4 D.與橢圓SKIPIF1<0有同樣的焦點(diǎn)【典例2】(多選)(2023春·福建三明·高二校聯(lián)考開學(xué)考試)已知雙曲線SKIPIF1<0,則不因SKIPIF1<0的值改變而改變的是(
)A.焦距 B.頂點(diǎn)坐標(biāo)C.離心率 D.漸近線方程【變式1】(多選)(2023春·山東臨沂·高二統(tǒng)考期末)已知雙曲線SKIPIF1<0,則(
)A.實(shí)軸長為1 B.虛軸長為2C.離心率SKIPIF1<0 D.漸近線方程為SKIPIF1<0【變式2】(2023春·江西·高三校聯(lián)考階段練習(xí))已知雙曲線SKIPIF1<0,下列結(jié)論正確的是(
)A.C的實(shí)軸長為SKIPIF1<0 B.C的漸近線方程為SKIPIF1<0C.C的離心率為SKIPIF1<0 D.C的一個(gè)焦點(diǎn)的坐標(biāo)為SKIPIF1<0題型02根據(jù)雙曲線幾何性質(zhì)求其標(biāo)準(zhǔn)方程【典例1】(2023·全國·高三專題練習(xí))過點(diǎn)SKIPIF1<0且與橢圓SKIPIF1<0有相同焦點(diǎn)的雙曲線的標(biāo)準(zhǔn)方程為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例2】(2023·高二課時(shí)練習(xí))與雙曲線SKIPIF1<0有公共焦點(diǎn),且過點(diǎn)SKIPIF1<0的雙曲線方程為.【典例3】(2023秋·湖南衡陽·高二統(tǒng)考期末)解答下列兩個(gè)小題:(1)雙曲線SKIPIF1<0:SKIPIF1<0離心率為SKIPIF1<0,且點(diǎn)SKIPIF1<0在雙曲線SKIPIF1<0上,求SKIPIF1<0的方程;(2)雙曲線SKIPIF1<0實(shí)軸長為2,且雙曲線SKIPIF1<0與橢圓SKIPIF1<0的焦點(diǎn)相同,求雙曲線SKIPIF1<0的標(biāo)準(zhǔn)方程.【變式1】(2023春·廣東佛山·高二南海中學(xué)??茧A段練習(xí))一雙曲線的虛軸長為4,離心率與橢圓SKIPIF1<0的離心率互為倒數(shù),且焦點(diǎn)所在軸相同,則該雙曲線的方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式2】(2023·全國·高三專題練習(xí))已知雙曲線SKIPIF1<0的離心率SKIPIF1<0,實(shí)半軸長為4,則雙曲線的方程為.題型03雙曲線的漸近線問題【典例1】(2023秋·高二單元測(cè)試)已知雙曲線SKIPIF1<0兩條漸近線的夾角為SKIPIF1<0,則此雙曲線的離心率為(
)A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03春·四川達(dá)州·高二統(tǒng)考期末)已知雙曲線SKIPIF1<0的離心率為2,則它的漸近線方程為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例3】(2023春·江西贛州·高二校聯(lián)考階段練習(xí))如圖所示,點(diǎn)SKIPIF1<0是雙曲線SKIPIF1<0的左、右焦點(diǎn),雙曲線SKIPIF1<0的右支上存在一點(diǎn)SKIPIF1<0滿足SKIPIF1<0與雙曲線SKIPIF1<0的左支的交點(diǎn)SKIPIF1<0平分線段SKIPIF1<0,則雙曲線SKIPIF1<0的漸近線斜率為(
)
A.SKIPIF1<03 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1】(2023春·河南平頂山·高二統(tǒng)考期末)雙曲線SKIPIF1<0的右焦點(diǎn)到C的一條漸近線的距離為(
)A.2 B.SKIPIF1<0 C.3 D.4【變式2】(2023秋·四川巴中·高二統(tǒng)考期末)若雙曲線SKIPIF1<0經(jīng)過點(diǎn)SKIPIF1<0,則該雙曲線的漸近線方程為.【變式3】(2023春·湖南·高三校聯(lián)考階段練習(xí))已知SKIPIF1<0為雙曲線SKIPIF1<0的左、右焦點(diǎn),過SKIPIF1<0作直線SKIPIF1<0的垂線分別交雙曲線的左、右兩支于SKIPIF1<0兩點(diǎn)(如圖).若SKIPIF1<0構(gòu)成以SKIPIF1<0為頂角的等腰三角形,則雙曲線的漸近線方程為.
題型04雙曲線的離心率問題(定值)【典例1】(2023秋·高二單元測(cè)試)已知雙曲線SKIPIF1<0兩條漸近線的夾角為SKIPIF1<0,則此雙曲線的離心率為(
)A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例2】(2023春·湖南衡陽·高二統(tǒng)考期末)古希臘數(shù)學(xué)家托勒密在他的名著《數(shù)學(xué)匯編》,里給出了托勒密定理,即任意凸四邊形中,兩條對(duì)角線的乘積小于等于兩組對(duì)邊的乘積之和,當(dāng)且僅當(dāng)凸四邊形的四個(gè)頂點(diǎn)同在一個(gè)圓上時(shí)等號(hào)成立.已知雙曲線SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,雙曲線C上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,若SKIPIF1<0,則雙曲線SKIPIF1<0的離心率.【典例3】(2023春·四川涼山·高二寧南中學(xué)校聯(lián)考期末)已知雙曲線SKIPIF1<0,(SKIPIF1<0,SKIPIF1<0)的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,過點(diǎn)SKIPIF1<0作一條斜率為SKIPIF1<0的直線與雙曲線在第一象限交于點(diǎn)M,且SKIPIF1<0,則雙曲線C的離心率為.【變式1】(2023·河北滄州·??寄M預(yù)測(cè))已知雙曲線SKIPIF1<0,SKIPIF1<0為原點(diǎn),SKIPIF1<0分別為該雙曲線的左,右頂點(diǎn)SKIPIF1<0分別為該雙曲線的左、右焦點(diǎn),第二象限內(nèi)的點(diǎn)SKIPIF1<0在雙曲線的漸近線上,SKIPIF1<0為SKIPIF1<0的平分線,且線段SKIPIF1<0的長為焦距的一半,則該雙曲線的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.SKIPIF1<0【變式2】(2023春·福建泉州·高二校聯(lián)考期末)已知直線SKIPIF1<0是雙曲線SKIPIF1<0(SKIPIF1<0)的一條漸近線,則SKIPIF1<0的離心率為.【變式3】(2023春·江西宜春·高二江西省宜豐中學(xué)??计谀┮阎p曲線SKIPIF1<0的一條漸近線被圓SKIPIF1<0截得的弦長為SKIPIF1<0,則雙曲線SKIPIF1<0的離心率為.題型05雙曲線的離心率問題(最值或范圍)【典例1】(2023春·福建泉州·高二校聯(lián)考期中)已知雙曲線SKIPIF1<0的上下焦點(diǎn)分別為SKIPIF1<0,點(diǎn)SKIPIF1<0在SKIPIF1<0的下支上,過點(diǎn)SKIPIF1<0作SKIPIF1<0的一條漸近線的垂線,垂足為SKIPIF1<0,若SKIPIF1<0恒成立,則SKIPIF1<0的離心率的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例2】(2023·安徽合肥·合肥市第六中學(xué)校考模擬預(yù)測(cè))雙曲線SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)的焦距為SKIPIF1<0,已知點(diǎn)SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,且SKIPIF1<0,則雙曲線離心率的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例3】(2023春·福建福州·高二校聯(lián)考期中)已知雙曲線SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,雙曲線的左頂點(diǎn)為A,以SKIPIF1<0為直徑的圓交雙曲線的一條漸近線于P,Q兩點(diǎn),其中點(diǎn)Q在y軸右側(cè),若SKIPIF1<0,則該雙曲線的離心率的取值范圍是.【變式1】(2023·河北·校聯(lián)考三模)已知雙曲線SKIPIF1<0(其中SKIPIF1<0),若SKIPIF1<0,則雙曲線SKIPIF1<0離心率的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式2】(2023·安徽·合肥一中校聯(lián)考模擬預(yù)測(cè))設(shè)點(diǎn)F為雙曲線SKIPIF1<0的左焦點(diǎn),經(jīng)過原點(diǎn)O且斜率SKIPIF1<0的直線與雙曲線C交于A?B兩點(diǎn),AF的中點(diǎn)為P,BF的中點(diǎn)為Q.若SKIPIF1<0,則雙曲線C的離心率e的取值范圍是.【變式3】(2023春·湖北宜昌·高二葛洲壩中學(xué)校考階段練習(xí))已知SKIPIF1<0,SKIPIF1<0是雙曲線SKIPIF1<0的左,右焦點(diǎn),經(jīng)過點(diǎn)SKIPIF1<0且與SKIPIF1<0軸垂直的直線與雙曲線的一條漸近線相交于點(diǎn)SKIPIF1<0,且SKIPIF1<0在第三象限,四邊形SKIPIF1<0為平行四邊形,SKIPIF1<0為直線SKIPIF1<0的傾斜角,若SKIPIF1<0,則該雙曲線離心率的取值范圍是.題型06根據(jù)雙曲線的離心率求參數(shù)【典例1】(2023春·陜西咸陽·高二校考階段練習(xí))已知雙曲線SKIPIF1<0的離心率為SKIPIF1<0,則其漸近線方程為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例2】(2023秋·江蘇·高二統(tǒng)考期末)設(shè)SKIPIF1<0為實(shí)數(shù),已知雙曲線SKIPIF1<0的離心率SKIPIF1<0,則SKIPIF1<0的取值范圍為【變式1】(2023春·湖南長沙·高三長郡中學(xué)??茧A段練習(xí))已知SKIPIF1<0,SKIPIF1<0是雙曲線SKIPIF1<0的兩個(gè)焦點(diǎn),SKIPIF1<0為SKIPIF1<0上一點(diǎn),且SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0的離心率為SKIPIF1<0,則SKIPIF1<0的值為(
)A.3 B.SKIPIF1<0 C.2 D.SKIPIF1<0【變式2】(2023·北京·高三專題練習(xí))已知雙曲線SKIPIF1<0的離心率為2,則實(shí)數(shù)SKIPIF1<0.題型07直線與雙曲線的位置關(guān)系【典例1】(多選)(2023秋·山西太原·高二山西大附中??计谀┲本€SKIPIF1<0與雙曲線SKIPIF1<0的左、右兩支各有一個(gè)交點(diǎn),則SKIPIF1<0的可能取值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例2】(2023春·安徽六安·高二六安二中??奸_學(xué)考試)已知直線SKIPIF1<0與雙曲線SKIPIF1<0相交于A,B兩點(diǎn),若A,B兩點(diǎn)在雙曲線的左支上,則實(shí)數(shù)a的取值范圍是.【變式1】(2023春·上海徐匯·高二上海市徐匯中學(xué)??计谥校┮阎本€SKIPIF1<0和雙曲線SKIPIF1<0,若l與C的右支交于不同的兩點(diǎn),則t的取值范圍是.【變式2】(2023·上海崇明·上海市崇明中學(xué)??寄M預(yù)測(cè))記雙曲線SKIPIF1<0的離心率為SKIPIF1<0,若直線SKIPIF1<0與SKIPIF1<0無公共點(diǎn),則SKIPIF1<0的取值范圍為.【變式3】(2023秋·廣西北?!じ叨y(tǒng)考期末)若直線l過點(diǎn)SKIPIF1<0,且與雙曲線SKIPIF1<0有且只有一個(gè)公共點(diǎn),則滿足條件的直線有條.題型08弦長問題【典例1】(2023·新疆喀什·校考模擬預(yù)測(cè))已知雙曲線C兩條準(zhǔn)線之間的距離為1,離心率為2,直線l經(jīng)過C的右焦點(diǎn),且與C相交于A、B兩點(diǎn).(1)求C的標(biāo)準(zhǔn)方程;(2)若直線l與該雙曲線的漸近線垂直,求AB的長度.【典例2】(2023·全國·高三專題練習(xí))已知雙曲線SKIPIF1<0的一條漸近線方程為SKIPIF1<0,焦距為SKIPIF1<0.(1)求雙曲線C的標(biāo)準(zhǔn)方程;(2)若O為坐標(biāo)原點(diǎn),過SKIPIF1<0的直線l交雙曲線C于A,B兩點(diǎn),且SKIPIF1<0的面積為SKIPIF1<0,求直線l的方程.【典例3】(2023春·甘肅金昌·高二永昌縣第一高級(jí)中學(xué)??茧A段練習(xí))已知雙曲線C的漸近線為SKIPIF1<0,且過點(diǎn)SKIPIF1<0.(1)求雙曲線C的方程;(2)若直線SKIPIF1<0與雙曲線C相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若OA與OB垂直,求a的值以及弦長SKIPIF1<0.【變式1】(2023春·四川遂寧·高二射洪中學(xué)校考期中)已知雙曲線的焦點(diǎn)為SKIPIF1<0,SKIPIF1<0,且該雙曲線過點(diǎn)SKIPIF1<0.(1)求雙曲線的標(biāo)準(zhǔn)方程;(2)過左焦點(diǎn)SKIPIF1<0作斜率為SKIPIF1<0的弦AB,求AB的長;(3)求SKIPIF1<0的周長.【變式2】(2023·全國·高三專題練習(xí))過雙曲線SKIPIF1<0的左焦點(diǎn)SKIPIF1<0,作傾斜角為SKIPIF1<0的直線SKIPIF1<0.(1)求證:SKIPIF1<0與雙曲線有兩個(gè)不同的交點(diǎn)SKIPIF1<0;(2)求線段SKIPIF1<0的中點(diǎn)SKIPIF1<0的坐標(biāo)和SKIPIF1<0.【變式3】(2023秋·遼寧沈陽·高二沈陽二十中校聯(lián)考期末)已知雙曲線SKIPIF1<0經(jīng)過點(diǎn)SKIPIF1<0,它的左焦點(diǎn)為SKIPIF1<0,且SKIPIF1<0到其漸近線的距離是SKIPIF1<0.(1)求SKIPIF1<0的方程;(2)過點(diǎn)SKIPIF1<0的直線SKIPIF1<0交SKIPIF1<0左支于一點(diǎn)SKIPIF1<0,且SKIPIF1<0的斜率是SKIPIF1<0,求SKIPIF1<0長.題型09三角形面積問題【典例1】(2023春·河南·高二校聯(lián)考階段練習(xí))已知雙曲線SKIPIF1<0,點(diǎn)SKIPIF1<0為其兩個(gè)焦點(diǎn),點(diǎn)SKIPIF1<0為雙曲線上一點(diǎn),若SKIPIF1<0,則三角形SKIPIF1<0的面積為(
)A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例2】(2023·河南新鄉(xiāng)·新鄉(xiāng)市第一中學(xué)??寄M預(yù)測(cè))已知雙曲線SKIPIF1<0:SKIPIF1<0(SKIPIF1<0)的離心率為3,焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0在雙曲線SKIPIF1<0上.若SKIPIF1<0的周長為SKIPIF1<0,則SKIPIF1<0的面積是.【典例3】(2023春·上海寶山·高二上海交大附中??计谥校┮阎p曲線SKIPIF1<0,及直線SKIPIF1<0.(1)若SKIPIF1<0與SKIPIF1<0有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)SKIPIF1<0的值;(2)若SKIPIF1<0與SKIPIF1<0的左右兩支分別交于A、B兩點(diǎn),且SKIPIF1<0的面積為SKIPIF1<0,求實(shí)數(shù)SKIPIF1<0的值.【變式1】(2023·安徽六安·六安一中??寄M預(yù)測(cè))已知雙曲線SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0、SKIPIF1<0,直線SKIPIF1<0與雙曲線SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),若SKIPIF1<0,則SKIPIF1<0的面積等于(
)A.18 B.10 C.9 D.6【變式2】(2023秋·河南平頂山·高二統(tǒng)考期末)已知雙曲線C:SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0與拋物線SKIPIF1<0的焦點(diǎn)重合,點(diǎn)P在雙曲線C的右支上,若SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的面積為.【變式3】(2023·浙江·二模)已知SKIPIF1<0,SKIPIF1<0分別為雙曲線SKIPIF1<0:SKIPIF1<0的左、右焦點(diǎn),SKIPIF1<0是SKIPIF1<0上一點(diǎn),線段SKIPIF1<0與SKIPIF1<0交于SKIPIF1<0點(diǎn).(1)證明:SKIPIF1<0;(2)若SKIPIF1<0的面積為8,求直線SKIPIF1<0的斜率.題型10中點(diǎn)弦和點(diǎn)差法【典例1】(2023·全國·高三專題練習(xí))過點(diǎn)SKIPIF1<0的直線SKIPIF1<0與雙曲線SKIPIF1<0相交于SKIPIF1<0兩點(diǎn),若SKIPIF1<0是線段SKIPIF1<0的中點(diǎn),則直線SKIPIF1<0的方程是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【典例2】(2023春·甘肅蘭州·高二統(tǒng)考期中)已知雙曲線SKIPIF1<0的一條漸近線方程為SKIPIF1<0,一個(gè)焦點(diǎn)到該漸近線的距離為1.(1)求SKIPIF1<0的方程;(2)經(jīng)過點(diǎn)SKIPIF1<0的直線SKIPIF1<0交SKIPIF1<0于SKIPIF1<0兩點(diǎn),且SKIPIF1<0為線段SKIPIF1<0的中點(diǎn),求SKIPIF1<0的方程.【典例3】(2023春·江西萍鄉(xiāng)·高二校聯(lián)考階段練習(xí))已知雙曲線SKIPIF1<0的右焦點(diǎn)為SKIPIF1<0,且C的一條漸近線經(jīng)過點(diǎn)SKIPIF1<0.(1)求C的標(biāo)準(zhǔn)方程;(2)是否存在過點(diǎn)SKIPIF1<0的直線l與C交于不同的A,B兩點(diǎn),且線段AB的中點(diǎn)為P.若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.【變式1】(2023·高二課時(shí)練習(xí))雙曲線SKIPIF1<0的一條弦的中點(diǎn)為SKIPIF1<0,則此弦所在的直線方程為.【變式2】(2023·全國·高三專題練習(xí))已知雙曲線SKIPIF1<0的其中一個(gè)焦點(diǎn)為SKIPIF1<0,一條漸近線方程為SKIPIF1<0(1)求雙曲線SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)已知傾斜角為SKIPIF1<0的直線SKIPIF1<0與雙曲線SKIPIF1<0交于SKIPIF1<0兩點(diǎn),且線段SKIPIF1<0的中點(diǎn)的縱坐標(biāo)為4,求直線SKIPIF1<0的方程.【變式3】(2023秋·重慶北碚·高二西南大學(xué)附中??茧A段練習(xí))雙曲線SKIPIF1<0的漸近線方程為SKIPIF1<0,一個(gè)焦點(diǎn)到該漸近線的距離為2.(1)求C的方程;(2)是否存在直線l,經(jīng)過點(diǎn)SKIPIF1<0且與雙曲線C于A,B兩點(diǎn),M為線段AB的中點(diǎn),若存在,求l的方程:若不存在,說明理由.題型11雙曲線的定點(diǎn)、定值、定直線問題問題【典例1】(2023春·全國·高二合肥市第六中學(xué)校聯(lián)考開學(xué)考試)已知SKIPIF1<0為坐標(biāo)原點(diǎn),雙曲線SKIPIF1<0:SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0在雙曲線SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0分別是線段SKIPIF1<0,SKIPIF1<0的中點(diǎn),且SKIPIF1<0,SKIPIF1<0.(1)求雙曲線SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)已知點(diǎn)SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0與SKIPIF1<0,SKIPIF1<0不重合時(shí),設(shè)直線SKIPIF1<0,SKIPIF1<0的斜率分別為SKIPIF1<0,SKIPIF1<0,證明:SKIPIF1<0為定值.【典例2】(2023·全國·高三專題練習(xí))已知雙曲線SKIPIF1<0的離心率為2,右焦點(diǎn)SKIPIF1<0到其中一條漸近線的距離為SKIPIF1<0.(1)求雙曲線SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)過右焦點(diǎn)SKIPIF1<0作直線SKIPIF1<0交雙曲線于SKIPIF1<0兩點(diǎn),過點(diǎn)SKIPIF1<0作直線SKIPIF1<0的垂線,垂足為SKIPIF1<0,求證直線SKIPIF1<0過定點(diǎn).【典例3】(2023·全國·高三專題練習(xí))已知雙曲線C:SKIPIF1<0的離心率為SKIPIF1<0,過點(diǎn)SKIPIF1<0的直線l與C左右兩支分別交于M,N兩個(gè)不同的點(diǎn)(異于頂點(diǎn)).(1)若點(diǎn)P為線段MN的中點(diǎn),求直線OP與直線MN斜率之積(O為坐標(biāo)原點(diǎn));(2)若A,B為雙曲線的左右頂點(diǎn),且SKIPIF1<0,試判斷直線AN與直線BM的交點(diǎn)G是否在定直線上,若是,求出該定直線,若不是,請(qǐng)說明理由【變式1】(2023·高二課時(shí)練習(xí))已知雙曲線SKIPIF1<0過點(diǎn)SKIPIF1<0,且離心率SKIPIF1<0(1)求該雙曲線的標(biāo)準(zhǔn)方程:(2)如果SKIPIF1<0,SKIPIF1<0為雙曲線上的動(dòng)點(diǎn),直線SKIPIF1<0與直線SKIPIF1<0的斜率互為相反數(shù),證明直線SKIPIF1<0的斜率為定值,并求出該定值.【變式2】(2023·高二課時(shí)練習(xí))已知雙曲線SKIPIF1<0的左右頂點(diǎn)分別為SKIPIF1<0.直線SKIPIF1<0和兩條漸近線交于點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0在第一象限且SKIPIF1<0,SKIPIF1<0是雙曲線上的任意一點(diǎn).(1)求雙曲線的標(biāo)準(zhǔn)方程;(2)是否存在點(diǎn)P使得SKIPIF1<0為直角三角形?若存在,求出點(diǎn)P的個(gè)數(shù);(3)直線SKIPIF1<0與直線SKIPIF1<0分別交于點(diǎn)SKIPIF1<0,證明:以SKIPIF1<0為直徑的圓必過定點(diǎn).【變式3】(2023·全國·高三專題練習(xí))在①C的漸近線方程為SKIPIF1<0
②C的離心率為SKIPIF1<0這兩個(gè)條件中任選一個(gè),填在題中的橫線上,并解答.已知雙曲線C的對(duì)稱中心在坐標(biāo)原點(diǎn),對(duì)稱軸為坐標(biāo)軸,點(diǎn)SKIPIF1<0在C上,且______.(1)求C的標(biāo)準(zhǔn)方程;(2)已知C的右焦點(diǎn)為F,直線PF與C交于另一點(diǎn)Q,不與直線PF重合且過F的動(dòng)直線l與C交于M,N兩點(diǎn),直線PM和QN交于點(diǎn)A,證明:A在定直線上.注:如果選擇兩個(gè)條件分別解答,則按第一個(gè)解答計(jì)分.題型12雙曲線中的向量問題【典例1】(2023秋·廣東深圳·高二統(tǒng)考期末)在平面直角坐標(biāo)系xOy中,已知雙曲線C:SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)的一條漸近線為SKIPIF1<0,且點(diǎn)SKIPIF1<0在C上.(1)求C的方程;(2)設(shè)C的上焦點(diǎn)為F,過F的直線l交C于A,B兩點(diǎn),且SKIPIF1<0,求l的斜率.【典例2】(2023秋·江蘇蘇州·高二統(tǒng)考期末)在平面直角坐標(biāo)系SKIPIF1<0中,存在兩定點(diǎn)SKIPIF1<0,SKIPIF1<0與一動(dòng)點(diǎn)A.已知直線SKIPIF1<0與直線SKIPIF1<0的斜率之積為3.(1)求A的軌跡SKIPIF1<0;(2)記SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0、SKIPIF1<0.過定點(diǎn)SKIPIF1<0的直線SKIPIF1<0交SKIPIF1<0于SKIPIF1<0、SKIPIF1<0兩點(diǎn).若SKIPIF1<0、SKIPIF1<0兩點(diǎn)滿足SKIPIF1<0,求SKIPIF1<0的方程.【變式1】(2023秋·浙江杭州·高二杭州高級(jí)中學(xué)??计谀┮阎p曲線C:SKIPIF1<0的漸近線方程為SKIPIF1<0,且過點(diǎn)SKIPIF1<0.(1)求雙曲線C的方程;(2)若F是雙曲線的右焦點(diǎn),Q是雙曲線上的一點(diǎn),過點(diǎn)F,Q的直線l與y軸交于點(diǎn)M,且SKIPIF1<0,求直線l的斜率.【變式2】(2023秋·安徽滁州·高二校聯(lián)考期末)已知雙曲線SKIPIF1<0:SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)的左頂點(diǎn)為SKIPIF1<0,SKIPIF1<0到SKIPIF1<0的一條漸近線的距離為SKIPIF1<0.(1)求SKIPIF1<0的方程;(2)過點(diǎn)SKIPIF1<0的直線SKIPIF1<0與SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),求SKIPIF1<0的值.A夯實(shí)基礎(chǔ)B能力提升C綜合素養(yǎng)A夯實(shí)基礎(chǔ)一、單選題1.(2023春·四川資陽·高二統(tǒng)考期末)雙曲線SKIPIF1<0的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2023·四川成都·校考一模)已知中心在原點(diǎn),焦點(diǎn)在y軸上的雙曲線的離心率為SKIPIF1<0,則它的漸近線方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<03.(2023春·四川成都·高二校聯(lián)考期末)若雙曲線的漸近線方程為SKIPIF1<0,實(shí)軸長為SKIPIF1<0,且焦點(diǎn)在x軸上,則該雙曲線的標(biāo)準(zhǔn)方程為(
)A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<04.(2023春·河南·高三校聯(lián)考階段練習(xí))已知SKIPIF1<0,SKIPIF1<0分別為雙曲線SKIPIF1<0的左、右焦點(diǎn),點(diǎn)SKIPIF1<0在SKIPIF1<0的右支上,點(diǎn)SKIPIF1<0在直線SKIPIF1<0上,若SKIPIF1<0,則雙曲線SKIPIF1<0的離心率的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<05.(2023·湖南·校聯(lián)考模擬預(yù)測(cè))過雙曲線SKIPIF1<0的左焦點(diǎn)作直線SKIPIF1<0交雙曲線于A,B兩點(diǎn),若實(shí)數(shù)SKIPIF1<0使得SKIPIF1<0的直線SKIPIF1<0恰有3條,則SKIPIF1<0(
)A.2 B.3 C.4 D.66.(2023春·河南·高二校聯(lián)考階段練習(xí))已知雙曲線SKIPIF1<0,點(diǎn)SKIPIF1<0為其兩個(gè)焦點(diǎn),點(diǎn)SKIPIF1<0為雙曲線上一點(diǎn),若SKIPIF1<0,則三角形SKIPIF1<0的面積為(
)A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.(2023·河南鄭州·統(tǒng)考模擬預(yù)測(cè))已知雙曲線SKIPIF1<0的左焦點(diǎn)為SKIPIF1<0,過原點(diǎn)SKIPIF1<0的直線與SKIPIF1<0交于點(diǎn)SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(
)A.2 B.4 C.8 D.168.(2023·江西贛州·統(tǒng)考二模)已知雙曲線SKIPIF1<0的左、右焦點(diǎn)分別是SKIPIF1<0,SKIPIF1<0,直線SKIPIF1<0分別經(jīng)過雙曲線的實(shí)軸和虛軸的一個(gè)端點(diǎn),SKIPIF1<0,SKIPIF1<0到直線SKIPIF1<0的距離和大于實(shí)軸長,則雙曲線的離心率的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多選題9.(2023·海南·??寄M預(yù)測(cè))下列關(guān)于雙曲線SKIPIF1<0說法正確的是(
)A.實(shí)軸長為6 B.與雙曲線SKIPIF1<0有相同的漸近線C.焦點(diǎn)到漸近線距離為4 D.與橢圓SKIPIF1<0有同樣的焦點(diǎn)10.(2023秋·廣東梅州·高二統(tǒng)考期末)已知雙曲線SKIPIF1<0SKIPIF1<0SKIPIF1<0的漸近線方程為SKIPIF1<0,則該雙曲線的方程可以是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0三、填空題11.(2023春·上海靜安·高二統(tǒng)考期末)若雙曲線SKIPIF1<0的漸近線方程為SKIPIF1<0,且過點(diǎn)SKIPIF1<0,則SKIPIF1<0的焦距為.12.(2023春·上海徐匯·高二上海市徐匯中學(xué)??计谥校┮阎本€SKIPIF1<0和雙曲線SKIPIF1<0,若l與C的右支交于不同的兩點(diǎn),則t的取值范圍是.四、解答題13.(2023春·新疆塔城·高二統(tǒng)考開學(xué)考試)雙曲線SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,已知焦距為8,離心率為2,(1)求雙曲線標(biāo)準(zhǔn)方程;(2)求雙曲線的頂點(diǎn)坐標(biāo)、焦點(diǎn)坐標(biāo)、實(shí)軸和虛軸長及漸近線方程.14.(2023春·黑龍江雞西·高二雞西實(shí)驗(yàn)中學(xué)校考期中)已知雙曲線SKIPIF1<0的實(shí)軸長為2,右焦點(diǎn)為SKIPIF1<0.(1)求雙曲線SKIPIF1<0的方程;(2)已知直線SKIPIF1<0與雙曲線SKIPIF1<0交于不同的兩點(diǎn)SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0.15.(2023春·浙江杭州·高二校考階段練習(xí))已知雙曲線SK
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)學(xué)治療技術(shù)研究進(jìn)展
- 公共安全科學(xué)導(dǎo)論
- 動(dòng)物醫(yī)學(xué)課程旁聽指南
- 《臨時(shí)調(diào)整》課件
- 《化妝的藝術(shù)與技巧》課件
- 《Katie De Sousa》上篇:精彩紛呈的課件展示
- 《臥室衣柜規(guī)劃》課件
- 《術(shù)后鎮(zhèn)痛管理策略》課件
- 粉末活動(dòng)策劃方案
- 《心臟驟停、復(fù)蘇》課件
- 校長在初三二模教學(xué)質(zhì)量分析會(huì)上講話明確差距,對(duì)癥下藥,多方聯(lián)動(dòng),分類推進(jìn),奮戰(zhàn)60天
- 民事起訴狀(勞動(dòng)爭議糾紛)
- 酒店前臺(tái)掛賬管理制度
- 船舶ABS規(guī)范培訓(xùn)
- 2025標(biāo)準(zhǔn)裝修合同范本
- 2025年中鐵特貨物流股份有限公司招聘(75人)筆試參考題庫附帶答案詳解
- 植物生理學(xué)(齊魯師范學(xué)院)知到課后答案智慧樹章節(jié)測(cè)試答案2025年春齊魯師范學(xué)院
- 北師大版數(shù)學(xué)八年級(jí)下學(xué)期 全等三角形七大模型 知識(shí)梳理+練習(xí) (含解析)
- 指導(dǎo)腎性貧血患者自我管理的中國專家共識(shí)(2024版)解讀課件
- 2023年新課標(biāo)全國ⅰ卷英語真題(解析)
- 公共管理學(xué)方法論知到智慧樹章節(jié)測(cè)試課后答案2024年秋華南農(nóng)業(yè)大學(xué)
評(píng)論
0/150
提交評(píng)論