浙江省臺州市三門縣2024屆中考數(shù)學仿真試卷含解析_第1頁
浙江省臺州市三門縣2024屆中考數(shù)學仿真試卷含解析_第2頁
浙江省臺州市三門縣2024屆中考數(shù)學仿真試卷含解析_第3頁
浙江省臺州市三門縣2024屆中考數(shù)學仿真試卷含解析_第4頁
浙江省臺州市三門縣2024屆中考數(shù)學仿真試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江省臺州市三門縣2024學年中考數(shù)學仿真試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列命題中真命題是()A.若a2=b2,則a=bB.4的平方根是±2C.兩個銳角之和一定是鈍角D.相等的兩個角是對頂角2.如圖,點D、E分別為△ABC的邊AB、AC上的中點,則△ADE的面積與四邊形BCED的面積的比為()A.1:2 B.1:3 C.1:4 D.1:13.如圖,C,B是線段AD上的兩點,若,,則AC與CD的關系為()A. B. C. D.不能確定4.的相反數(shù)是()A. B.- C. D.5.一個圓的內接正六邊形的邊長為2,則該圓的內接正方形的邊長為()A. B.2 C.2 D.46.若關于x的一元二次方程(m-1)x2+x+m2-5m+3=0有一個根為1,則m的值為A.1 B.3 C.0 D.1或37.如圖,在△ABC中,AC=BC,點D在BC的延長線上,AE∥BD,點ED在AC同側,若∠CAE=118°,則∠B的大小為()A.31° B.32° C.59° D.62°8.如圖,正方形ABCD的邊長為3cm,動點P從B點出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運動,到達A點停止運動;另一動點Q同時從B點出發(fā),以1cm/s的速度沿著邊BA向A點運動,到達A點停止運動.設P點運動時間為x(s),△BPQ的面積為y(cm2),則y關于x的函數(shù)圖象是()A. B. C. D.9.-10-4的結果是()A.-7B.7C.-14D.1310.下列圖形中,可以看作中心對稱圖形的是()A. B. C. D.11.如果一組數(shù)據(jù)6,7,x,9,5的平均數(shù)是2x,那么這組數(shù)據(jù)的中位數(shù)為()A.5 B.6 C.7 D.912.如圖是二次函數(shù)y=ax2+bx+cy1>y1.其中說法正確的是()A.①②B.②③C.①②④D.②③④二、填空題:(本大題共6個小題,每小題4分,共24分.)13.三個小伙伴各出資a元,共同購買了價格為b元的一個籃球,還剩下一點錢,則剩余金額為__元(用含a、b的代數(shù)式表示)14.若2x+y=2,則4x+1+2y的值是_______.15.如圖,正方形ABCD的邊長為2,分別以A、D為圓心,2為半徑畫弧BD、AC,則圖中陰影部分的面積為_____.16.不等式2x-5<7-(x-5)的解集是______________.17.如圖,在矩形ABCD中,AD=3,將矩形ABCD繞點A逆時針旋轉,得到矩形AEFG,點B的對應點E落在CD上,且DE=EF,則AB的長為_____.18.計算:___________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)計算:(﹣2)2+20180﹣20.(6分)為落實“美麗撫順”的工作部署,市政府計劃對城區(qū)道路進行了改造,現(xiàn)安排甲、乙兩個工程隊完成.已知甲隊的工作效率是乙隊工作效率的倍,甲隊改造360米的道路比乙隊改造同樣長的道路少用3天.甲、乙兩工程隊每天能改造道路的長度分別是多少米?若甲隊工作一天需付費用7萬元,乙隊工作一天需付費用5萬元,如需改造的道路全長1200米,改造總費用不超過145萬元,至少安排甲隊工作多少天?21.(6分)甲、乙兩組工人同時加工某種零件,乙組工作中有一次停產更換設備,更換設備后,乙組的工作效率是原來的2倍.兩組各自加工零件的數(shù)量(件)與時間(時)的函數(shù)圖象如圖所示.(1)求甲組加工零件的數(shù)量y與時間之間的函數(shù)關系式.(2)求乙組加工零件總量的值.(3)甲、乙兩組加工出的零件合在一起裝箱,每夠300件裝一箱,零件裝箱的時間忽略不計,求經過多長時間恰好裝滿第1箱?再經過多長時間恰好裝滿第2箱?22.(8分)如圖,在Rt△ABC的頂點A、B在x軸上,點C在y軸上正半軸上,且A(-1,0),B(4,0),∠ACB=90°.(1)求過A、B、C三點的拋物線解析式;(2)設拋物線的對稱軸l與BC邊交于點D,若P是對稱軸l上的點,且滿足以P、C、D為頂點的三角形與△AOC相似,求P點的坐標;(3)在對稱軸l和拋物線上是否分別存在點M、N,使得以A、O、M、N為頂點的四邊形是平行四邊形,若存在請直接寫出點M、點N的坐標;若不存在,請說明理由.圖1備用圖23.(8分)一不透明的布袋里,裝有紅、黃、藍三種顏色的小球(除顏色外其余都相同),其中有紅球2個,藍球1個,黃球若干個,現(xiàn)從中任意摸出一個球是紅球的概率為.求口袋中黃球的個數(shù);甲同學先隨機摸出一個小球(不放回),再隨機摸出一個小球,請用“樹狀圖法”或“列表法”,求兩次摸出都是紅球的概率;24.(10分)某商店準備購進甲、乙兩種商品.已知甲商品每件進價15元,售價20元;乙商品每件進價35元,售價45元.(1)若該商店同時購進甲、乙兩種商品共100件,恰好用去2700元,求購進甲、乙兩種商品各多少件?(2)若該商店準備用不超過3100元購進甲、乙兩種商品共100件,且這兩種商品全部售出后獲利不少于890元,問應該怎樣進貨,才能使總利潤最大,最大利潤是多少?(利潤=售價﹣進價)25.(10分)如圖,在四邊形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于對角線AC,垂足是E,連接BE.(1)求證:四邊形ABCD是平行四邊形;(2)若AB=BE=2,sin∠ACD=,求四邊形ABCD的面積.26.(12分)某汽車制造公司計劃生產A、B兩種新型汽車共40輛投放到市場銷售.已知A型汽車每輛成本34萬元,售價39萬元;B型汽車每輛成本42萬元,售價50萬元.若該公司對此項計劃的投資不低于1536萬元,不高于1552萬元.請解答下列問題:(1)該公司有哪幾種生產方案?(2)該公司按照哪種方案生產汽車,才能在這批汽車全部售出后,所獲利潤最大,最大利潤是多少?(3)在(2)的情況下,公司決定拿出利潤的2.5%全部用于生產甲乙兩種鋼板(兩種都生產),甲鋼板每噸5000元,乙鋼板每噸6000元,共有多少種生產方案?(直接寫出答案)27.(12分)小昆和小明玩摸牌游戲,游戲規(guī)則如下:有3張背面完全相同,牌面標有數(shù)字1、2、3的紙牌,將紙牌洗勻后背面朝上放在桌面上,隨機抽出一張,記下牌面數(shù)字,放回后洗勻再隨機抽出一張.請用畫樹形圖或列表的方法(只選其中一種),表示出兩次抽出的紙牌數(shù)字可能出現(xiàn)的所有結果;若規(guī)定:兩次抽出的紙牌數(shù)字之和為奇數(shù),則小昆獲勝,兩次抽出的紙牌數(shù)字之和為偶數(shù),則小明獲勝,這個游戲公平嗎?為什么?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解題分析】

利用對頂角的性質、平方根的性質、銳角和鈍角的定義分別判斷后即可確定正確的選項.【題目詳解】A、若a2=b2,則a=±b,錯誤,是假命題;B、4的平方根是±2,正確,是真命題;C、兩個銳角的和不一定是鈍角,故錯誤,是假命題;D、相等的兩個角不一定是對頂角,故錯誤,是假命題.故選B.【題目點撥】考查了命題與定理的知識,解題的關鍵是了解對頂角的性質、平方根的性質、銳角和鈍角的定義,難度不大.2、B【解題分析】

根據(jù)中位線定理得到DE∥BC,DE=BC,從而判定△ADE∽△ABC,然后利用相似三角形的性質求解.【題目詳解】解:∵D、E分別為△ABC的邊AB、AC上的中點,∴DE是△ABC的中位線,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴△ADE的面積:△ABC的面積==1:4,∴△ADE的面積:四邊形BCED的面積=1:3;故選B.【題目點撥】本題考查三角形中位線定理及相似三角形的判定與性質.3、B【解題分析】

由AB=CD,可得AC=BD,又BC=2AC,所以BC=2BD,所以CD=3AC.【題目詳解】∵AB=CD,∴AC+BC=BC+BD,即AC=BD,又∵BC=2AC,∴BC=2BD,∴CD=3BD=3AC.故選B.【題目點撥】本題考查了線段長短的比較,在不同的情況下靈活選用它的不同表示方法,有利于解題的簡潔性.同時,靈活運用線段的和、差、倍轉化線段之間的數(shù)量關系是十分關鍵的一點.4、C【解題分析】

根據(jù)只有符號不同的兩個數(shù)互為相反數(shù)進行解答即可.【題目詳解】與只有符號不同,所以的相反數(shù)是,故選C.【題目點撥】本題考查了相反數(shù)的定義,熟練掌握相反數(shù)的定義是解題的關鍵.5、B【解題分析】

圓內接正六邊形的邊長是1,即圓的半徑是1,則圓的內接正方形的對角線長是2,進而就可求解.【題目詳解】解:∵圓內接正六邊形的邊長是1,∴圓的半徑為1.那么直徑為2.圓的內接正方形的對角線長為圓的直徑,等于2.∴圓的內接正方形的邊長是1.故選B.【題目點撥】本題考查正多邊形與圓,關鍵是利用知識點:圓內接正六邊形的邊長和圓的半徑相等;圓的內接正方形的對角線長為圓的直徑解答.6、B【解題分析】

直接把x=1代入已知方程即可得到關于m的方程,解方程即可求出m的值.【題目詳解】∵x=1是方程(m﹣1)x2+x+m2﹣5m+3=0的一個根,∴(m﹣1)+1+m2﹣5m+3=0,∴m2﹣4m+3=0,∴m=1或m=3,但當m=1時方程的二次項系數(shù)為0,∴m=3.故答案選B.【題目點撥】本題考查了一元二次方程的解,解題的關鍵是熟練的掌握一元二次方程的運算.7、A【解題分析】

根據(jù)等腰三角形的性質得出∠B=∠CAB,再利用平行線的性質解答即可.【題目詳解】∵在△ABC中,AC=BC,∴∠B=∠CAB,∵AE∥BD,∠CAE=118°,∴∠B+∠CAB+∠CAE=180°,即2∠B=180°?118°,解得:∠B=31°,故選A.【題目點撥】此題考查等腰三角形的性質,關鍵是根據(jù)等腰三角形的性質得出∠B=∠CAB.8、C【解題分析】試題分析:由題意可得BQ=x.①0≤x≤1時,P點在BC邊上,BP=3x,則△BPQ的面積=BP?BQ,解y=?3x?x=;故A選項錯誤;②1<x≤2時,P點在CD邊上,則△BPQ的面積=BQ?BC,解y=?x?3=;故B選項錯誤;③2<x≤3時,P點在AD邊上,AP=9﹣3x,則△BPQ的面積=AP?BQ,解y=?(9﹣3x)?x=;故D選項錯誤.故選C.考點:動點問題的函數(shù)圖象.9、C【解題分析】解:-10-4=-1.故選C.10、B【解題分析】

根據(jù)中心對稱圖形的概念求解.【題目詳解】解:A、不是中心對稱圖形,故此選項錯誤;

B、是中心對稱圖形,故此選項正確;

C、不是中心對稱圖形,故此選項錯誤;

D、不是中心對稱圖形,故此選項錯誤.

故選:B.【題目點撥】此題主要考查了中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.11、B【解題分析】

直接利用平均數(shù)的求法進而得出x的值,再利用中位數(shù)的定義求出答案.【題目詳解】∵一組數(shù)據(jù)1,7,x,9,5的平均數(shù)是2x,∴,解得:,則從大到小排列為:3,5,1,7,9,故這組數(shù)據(jù)的中位數(shù)為:1.故選B.【題目點撥】此題主要考查了中位數(shù)以及平均數(shù),正確得出x的值是解題關鍵.12、C【解題分析】∵二次函數(shù)的圖象的開口向上,∴a>0?!叨魏瘮?shù)的圖象y軸的交點在y軸的負半軸上,∴c<0?!叨魏瘮?shù)圖象的對稱軸是直線x=﹣1,∴-b∴abc<0,因此說法①正確?!?a﹣b=1a﹣1a=0,因此說法②正確?!叨魏瘮?shù)y=∴圖象與x軸的另一個交點的坐標是(1,0)?!喟褁=1代入y=ax1+bx+c得:y=4a+1b+c>0,因此說法③錯誤?!叨魏瘮?shù)y=∴點(﹣5,y1)關于對稱軸的對稱點的坐標是(3,y1),∵當x>﹣1時,y隨x的增大而增大,而52∴y1<y1,因此說法④正確。綜上所述,說法正確的是①②④。故選C。二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(3a﹣b)【解題分析】解:由題意可得,剩余金額為:(3a-b)元,故答案為:(3a-b).點睛:本題考查列代數(shù)式,解答本題的關鍵是明確題意,列出相應的代數(shù)式.14、1【解題分析】分析:將原式化簡成2(2x+y)+1,然后利用整體代入的思想進行求解得出答案.詳解:原式=2(2x+y)+1=2×2+1=1.點睛:本題主要考查的是整體思想求解,屬于基礎題型.找到整體是解題的關鍵.15、2﹣【解題分析】

過點F作FE⊥AD于點E,則AE=AD=AF,故∠AFE=∠BAF=30°,再根據(jù)勾股定理求出EF的長,由S弓形AF=S扇形ADF-S△ADF可得出其面積,再根據(jù)S陰影=2(S扇形BAF-S弓形AF)即可得出結論【題目詳解】如圖所示,過點F作FE⊥AD于點E,∵正方形ABCD的邊長為2,∴AE=AD=AF=1,∴∠AFE=∠BAF=30°,∴EF=.∴S弓形AF=S扇形ADF-S△ADF=,∴S陰影=2(S扇形BAF-S弓形AF)=2×[]=2×()=.【題目點撥】本題考查了扇形的面積公式和長方形性質的應用,關鍵是根據(jù)圖形的對稱性分析,主要考查學生的計算能力.16、x<【解題分析】解:去括號得:2x-5<7-x+5,移項、合并得:3x<17,解得:x<.故答案為:x<.17、3【解題分析】【分析】根據(jù)旋轉的性質知AB=AE,在直角三角形ADE中根據(jù)勾股定理求得AE長即可得.【題目詳解】∵四邊形ABCD是矩形,∴∠D=90°,BC=AD=3,∵將矩形ABCD繞點A逆時針旋轉得到矩形AEFG,∴EF=BC=3,AE=AB,∵DE=EF,∴AD=DE=3,∴AE==3,∴AB=3,故答案為3.【題目點撥】本題考查矩形的性質和旋轉的性質,熟知旋轉前后哪些線段是相等的是解題的關鍵.18、x+1【解題分析】

先通分,進行分式的加減法,再將分子進行因式分解,然后約分即可求出結果.【題目詳解】解:=.故答案是:x+1.【題目點撥】本題主要考查分式的混合運算,通分、因式分解和約分是解答的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、﹣1【解題分析】分析:首先計算乘方、零次冪和開平方,然后再計算加減即可.詳解:原式=4+1-6=-1.點睛:此題主要考查了實數(shù)的運算,關鍵是掌握乘方的意義、零次冪計算公式和二次根式的性質.20、(1)乙工程隊每天能改造道路的長度為40米,甲工程隊每天能改造道路的長度為60米.(2)10天.【解題分析】

(1)設乙工程隊每天能改造道路的長度為x米,則甲工程隊每天能改造道路的長度為x米,根據(jù)工作時間=工作總量÷工作效率結合甲隊改造360米的道路比乙隊改造同樣長的道路少用3天,即可得出關于x的分式方程,解之經檢驗后即可得出結論;(2)設安排甲隊工作m天,則安排乙隊工作天,根據(jù)總費用=甲隊每天所需費用×工作時間+乙隊每天所需費用×工作時間結合總費用不超過145萬元,即可得出關于m的一元一次不等式,解之取其中的最大值即可得出結論.【題目詳解】(1)設乙工程隊每天能改造道路的長度為x米,則甲工程隊每天能改造道路的長度為x米,根據(jù)題意得:,解得:x=40,經檢驗,x=40是原分式方程的解,且符合題意,∴x=×40=60,答:乙工程隊每天能改造道路的長度為40米,甲工程隊每天能改造道路的長度為60米;(2)設安排甲隊工作m天,則安排乙隊工作天,根據(jù)題意得:7m+5×≤145,解得:m≥10,答:至少安排甲隊工作10天.【題目點撥】本題考查了分式方程的應用以及一元一次不等式的應用,解題的關鍵是:(1)找準等量關系,正確列出分式方程;(2)根據(jù)各數(shù)量間的關系,正確列出一元一次不等式.21、(1)見解析(2)300(3)2小時【解題分析】

解:(1)設甲組加工的零件數(shù)量y與時間x的函數(shù)關系式為.根據(jù)題意,得,解得.所以,甲組加工的零件數(shù)量y與時間x的函數(shù)關系式為:.(2)當時,.因為更換設備后,乙組工作效率是原來的2倍,所以,.解得.(3)乙組更換設備后,乙組加工的零件的個數(shù)y與時間x的函數(shù)關系式為.當0≤x≤2時,.解得.舍去.當2<x≤2.8時,.解得.舍去.當2.8<x≤4.8時,.解得.所以,經過3小時恰好裝滿第1箱.當3<x≤4.8時,.解得.舍去.當4.8<x≤6時..解得.因為5-3=2,所以,再經過2小時恰好裝滿第2箱.22、見解析【解題分析】分析:(1)根據(jù)求出點的坐標,用待定系數(shù)法即可求出拋物線的解析式.(2)分兩種情況進行討論即可.(3)存在.假設直線l上存在點M,拋物線上存在點N,使得以A、O、M、N為頂點的四邊形為平行四邊形.分當平行四邊形是平行四邊形時,當平行四邊形AONM是平行四邊形時,當四邊形AMON為平行四邊形時,三種情況進行討論.詳解:(1)易證,得,∴OC=2,∴C(0,2),∵拋物線過點A(-1,0),B(4,0)因此可設拋物線的解析式為將C點(0,2)代入得:,即∴拋物線的解析式為(2)如圖2,當時,則P1(,2),當時,∴OC∥l,∴,∴P2H=·OC=5,∴P2(,5)因此P點的坐標為(,2)或(,5).(3)存在.假設直線l上存在點M,拋物線上存在點N,使得以A、O、M、N為頂點的四邊形為平行四邊形.如圖3,當平行四邊形是平行四邊形時,M(,),(,),當平行四邊形AONM是平行四邊形時,M(,),N(,),如圖4,當四邊形AMON為平行四邊形時,MN與OA互相平分,此時可設M(,m),則∵點N在拋物線上,∴-m=-·(-+1)(--4)=-,∴m=,此時M(,),N(-,-).綜上所述,M(,),N(,)或M(,),N(,)或M(,),N(-,-).點睛:屬于二次函數(shù)綜合題,考查相似三角形的判定與性質,待定系數(shù)法求二次函數(shù)解析式等,注意分類討論的思想方法在數(shù)學中的應用.23、(1)1;(2)【解題分析】

(1)設口袋中黃球的個數(shù)為x個,根據(jù)從中任意摸出一個球是紅球的概率為和概率公式列出方程,解方程即可求得答案;(2)根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與兩次摸出都是紅球的情況,再利用概率公式即可求得答案;【題目詳解】解:(1)設口袋中黃球的個數(shù)為個,根據(jù)題意得:解得:=1經檢驗:=1是原分式方程的解∴口袋中黃球的個數(shù)為1個(2)畫樹狀圖得:∵共有12種等可能的結果,兩次摸出都是紅球的有2種情況∴兩次摸出都是紅球的概率為:.【題目點撥】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.24、(1)商店購進甲種商品40件,購進乙種商品60件;(2)應購進甲種商品20件,乙種商品80件,才能使總利潤最大,最大利潤為900元.【解題分析】

(1)設購進甲、乙兩種商品分別為x件與y件,根據(jù)甲種商品件數(shù)+乙種商品件數(shù)=100,甲商品的總進價+乙種商品的總進價=2700,列出關于x與y的方程組,求出方程組的解即可得到x與y的值,得到購進甲、乙兩種商品的件數(shù);(2)設商店購進甲種商品a件,則購進乙種商品(100-a)件,根據(jù)甲商品的總進價+乙種商品的總進價小于等于3100,甲商品的總利潤+乙商品的總利潤大于等于890列出關于a的不等式組,求出不等式組的解集,得到a的取值范圍,根據(jù)a為正整數(shù)得出a的值,再表示總利潤W,發(fā)現(xiàn)W與a成一次函數(shù)關系式,且為減函數(shù),故a取最小值時,W最大,即可求出所求的進貨方案與最大利潤.【題目詳解】(1)設購進甲種商品x件,購進乙商品y件,根據(jù)題意得:,解得:,答:商店購進甲種商品40件,購進乙種商品60件;(2)設商店購進甲種商品a件,則購進乙種商品(100﹣a)件,根據(jù)題意列得:,解得:20≤a≤22,∵總利潤W=5a+10(100﹣a)=﹣5a+1000,W是關于a的一次函數(shù),W隨a的增大而減小,∴當a=20時,W有最大值,此時W=900,且100﹣20=80,答:應購進甲種商品20件,乙種商品80件,才能使總利潤最大,最大利潤為900元.【題目點撥】此題考查了二元一次方程組的應用,一次函數(shù)的性質,以及一元一次不等式組的應用,弄清題中的等量關系及不等關系是解本題的關鍵.25、(1)證明見解析;(2)S平行四邊

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論