




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2024屆貴州省畢節(jié)二中高一數(shù)學第二學期期末教學質(zhì)量檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.一個四面體的三視圖如圖所示,則該四面體的表面積是()A. B.C. D.2.已知分別為的三邊長,且,則=()A. B. C. D.33.已知非零向量,滿足,且,則與的夾角為
A. B. C. D.4.執(zhí)行右面的程序框圖,如果輸入的n是4,則輸出的P是A.8 B.5 C.3 D.25.已知雙曲線的焦點與橢圓的焦點相同,則雙曲線的離心率為()A. B. C. D.26.已知,則().A. B. C. D.7.對一切,恒成立,則實數(shù)的取值范圍是()A. B.C. D.8.為了得到函數(shù)的圖象,只需將函數(shù)圖象上所有的點()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度9.如圖,長方體中,,,,分別過,的兩個平行截面將長方體分成三個部分,其體積分別記為,,,.若,則截面的面積為()A. B. C. D.10.在區(qū)間上隨機選取一個數(shù),則滿足的概率為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在平行六面體中,為與的交點,若存在實數(shù),使向量,則__________.12.設等差數(shù)列的前項和為,若,,則______.13.已知函數(shù),對于上的任意,,有如下條件:①;②;③;④.其中能使恒成立的條件序號是__________.14.已知,且是第一象限角,則的值為__________.15.英國物理學家和數(shù)學家艾薩克·牛頓(Isaacnewton,1643-1727年)曾提出了物體在常溫環(huán)境下溫度變化的冷卻模型.現(xiàn)把一杯溫水放在空氣中冷卻,假設這杯水從開始冷卻,x分鐘后物體的溫度滿足:(其中…為自然對數(shù)的底數(shù)).則從開始冷卻,經(jīng)過5分鐘時間這杯水的溫度是________(單位:℃).16.若,則函數(shù)的值域為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.某市電視臺為了宣傳舉辦問答活動,隨機對該市15~65歲的人群抽樣了人,回答問題統(tǒng)計結(jié)果如圖表所示.組號
分組
回答正確
的人數(shù)
回答正確的人數(shù)
占本組的概率
第1組
5
0.5
第2組
0.9
第3組
27
第4組
0.36
第5組
3
(Ⅰ)分別求出的值;(Ⅱ)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,則第2,3,4組每組應各抽取多少人?(Ⅲ)在(Ⅱ)的前提下,電視臺決定在所抽取的6人中隨機抽取2人頒發(fā)幸運獎,求:所抽取的人中第2組至少有1人獲得幸運獎的概率.18.設a為實數(shù),函數(shù),(1)若,求不等式的解集;(2)是否存在實數(shù)a,使得函數(shù)在區(qū)間上既有最大值又有最小值?若存在,求出實數(shù)a的取值范圍;若不存在,請說明理由;(3)寫出函數(shù)在R上的零點個數(shù)(不必寫出過程).19.已知,,函數(shù).(1)求在區(qū)間上的最大值和最小值;(2)若函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),求正數(shù)的取值范圍.20.已知.(1)求不等式的解集;(2)若關(guān)于的不等式能成立,求實數(shù)的取值范圍.21.如圖,在中,點在邊上,,,.(1)求邊的長;(2)若的面積是,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】
試題分析:由三視圖可知,該幾何體是如下圖所示的三棱錐,其中平面平面,,且,,所以,與均為正三角形,且邊長為,所以,故該三棱錐的表面各為,故選B.考點:1.三視圖;2.多面體的表面積與體積.2、B【解題分析】
由已知直接利用正弦定理求解.【題目詳解】在中,由A=45°,C=60°,c=3,由正弦定理得.故選B.【題目點撥】本題考查三角形的解法,考查正弦定理的應用,屬于基礎題.3、B【解題分析】
根據(jù)題意,建立與的關(guān)系,即可得到夾角.【題目詳解】因為,所以,則,則,所以,所以夾角為故選B.【題目點撥】本題主要考查向量的數(shù)量積運算,難度較小.4、C【解題分析】試題分析:k=1,滿足條件k<4,則執(zhí)行循環(huán)體,p=0+1=1,s=1,t=1k=2,滿足條件k<4,則執(zhí)行循環(huán)體,p=1+1=2,s=1,t=2k=3,滿足條件k<4,則執(zhí)行循環(huán)體,p=1+2=3,s=2,t=3k=4,不滿足條件k<4,則退出執(zhí)行循環(huán)體,此時p=3考點:程序框圖5、B【解題分析】根據(jù)橢圓可以知焦點為,離心率,故選B.6、A【解題分析】
.所以選A.【題目點撥】本題考查了二倍角及同角正余弦的差與積的關(guān)系,屬于基礎題.7、B【解題分析】
先求得的取值范圍,根據(jù)恒成立問題的求解策略,將原不等式轉(zhuǎn)化為,再解一元二次不等式求得的取值范圍.【題目詳解】解:對一切,恒成立,轉(zhuǎn)化為:的最大值,又知,的最大值為;所以,解得或.故選B.【題目點撥】本小題主要考查恒成立問題的求解策略,考查三角函數(shù)求最值的方法,考查一元二次不等式的解法,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于中檔題.8、C【解題分析】
利用誘導公式,的圖象變換規(guī)律,得出結(jié)論.【題目詳解】為了得到函數(shù)的圖象,
只需將函數(shù)圖象上所有的點向左平移個單位長度,
故選C.9、B【解題分析】
解:由題意知,截面是一個矩形,并且長方體的體積V=6×4×3=72,∵V1:V2:V3=1:4:1,∴V1=VAEA1-DFD1=×72=12,則12=×AE×A1A×AD,解得AE=2,在直角△AEA1中,EA1=故截面的面積是EF×EA1=410、D【解題分析】
在區(qū)間上,且滿足所得區(qū)間為,利用區(qū)間的長度比,即可求解.【題目詳解】由題意,在區(qū)間上,且滿足所得區(qū)間為,由長度比的幾何概型,可得概率為,故選D.【題目點撥】本題主要考查了長度比的幾何概型的概率的計算,其中解答中認真審題,合理利用長度比求解是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
在平行六面體中把向量用用表示,再利用待定系數(shù)法,求得.再求解?!绢}目詳解】如圖所示:因為,又因為,所以,所以.故答案為:【題目點撥】本題主要考查了空間向量的基本定理,還考查了運算求解的能力,屬于基礎題.12、10【解題分析】
將和用首項和公差表示,解方程組,求出首項和公式,利用公式求解.【題目詳解】設該數(shù)列的公差為,由題可知:,解得,故.故答案為:10.【題目點撥】本題考查由基本量計算等差數(shù)列的通項公式以及前項和,屬基礎題.13、③④【解題分析】∵g(x)=[(﹣x)2﹣cos(﹣x)]=[x2﹣cosx]=g(x),∴g(x)是偶函數(shù),∴g(x)圖象關(guān)于y軸對稱,∵g′(x)=x+sinx>0,x∈(0,],∴g(x)在(0,]上是增函數(shù),在[﹣,0)是減函數(shù),故③x1>|x2|;④時,g(x1)>g(x2)恒成立,故答案為:③④.點睛:此題考查的是函數(shù)的單調(diào)性的應用;已知表達式,根據(jù)表達式判斷函數(shù)的單調(diào)性,和奇偶性,偶函數(shù)在對稱區(qū)間上的單調(diào)性相反,根據(jù)單調(diào)性的定義可知,增函數(shù)自變量越大函數(shù)值越大,減函數(shù)自變量越大函數(shù)值越小。14、;【解題分析】
利用兩角和的公式把題設展開后求得的值,進而利用的范圍判斷的范圍,利用同角三角函數(shù)的基本關(guān)系求得的值,最后利用誘導公式和對原式進行化簡,把的值和題設條件代入求解即可.【題目詳解】,,即,,兩邊同時平方得到:,解得,是第一象限角,,得,,即為第一或第四象限,,.故答案為:.【題目點撥】本題考查了兩角差的余弦公式、誘導公式以及同角三角函數(shù)的基本關(guān)系,需熟記三角函數(shù)中的公式,屬于中檔題.15、45【解題分析】
直接利用對數(shù)的運算性質(zhì)計算即可,【題目詳解】.故答案為:45.【題目點撥】本題考查對數(shù)的運算性質(zhì),考查計算能力,屬于基礎題.16、【解題分析】
令,結(jié)合可得,本題轉(zhuǎn)化為求二次函數(shù)在的值域,求解即可.【題目詳解】,.令,,則,由二次函數(shù)的性質(zhì)可知,當時,;當時,.故所求值域為.【題目點撥】本題考查了函數(shù)的值域,利用換元法是解決本題的一個方法.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)第2組抽人;第3組抽3人;第4組抽1人;(III).【解題分析】
(Ⅰ)由頻率表中第1組數(shù)據(jù)可知,第1組總?cè)藬?shù)為,再結(jié)合頻率分布直方圖可知∴=100×0.020×10×0.9=18,b=100×0.025×10×0.36=9,,(Ⅱ)第2,3,4組中回答正確的共有54人.∴利用分層抽樣在54人中抽取6人,每組分別抽取的人數(shù)為:第2組:人,第3組:人,第4組:人.(Ⅲ)設第2組的2人為、,第3組的3人為、、,第4組的1人為,則從6人中抽2人所有可能的結(jié)果有:,,,,,,,,,,,,,,,共15個基本事件,其中第2組至少有1人被抽中的有,,,,,,,,這9個基本事件.∴第2組至少有1人獲得幸運獎的概率為本題考查分層抽樣方法、統(tǒng)計基礎知識與等可能事件的概率.注意等可能事件中的基本事件數(shù)的準確性.18、(1)(2)不存在這樣的實數(shù),理由見解析(3)見解析【解題分析】
(1)代入的值,通過討論的范圍,求出不等式的解集即可;(2)通過討論的范圍,求出函數(shù)的單調(diào)區(qū)間,再求出函數(shù)的最值,得到關(guān)于的不等式組,解出并判斷即可;(3)通過討論的范圍,判斷函數(shù)的零點個數(shù)即可【題目詳解】(1)當時,,則當時,,解得或,故;當時,,解集為,綜上,的解集為(2),顯然,,①當時,則在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,因為函數(shù)在上既有最大值又有最小值,所以,,則,即,解得,故不存在這樣的實數(shù);②當時,則在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,因為函數(shù)在上既有最大值又有最小值,故,,則,即,解得,故不存在這樣的實數(shù);③當時,則為上的遞增函數(shù),故函數(shù)在上不存在最大值和最小值,綜上,不存在這樣的實數(shù)(3)當或時,函數(shù)的零點個數(shù)為1;當或時,函數(shù)的零點個數(shù)為2;當時,函數(shù)的零點個數(shù)為3【題目點撥】本題考查分段函數(shù)的應用,考查利用函數(shù)的單調(diào)性求最值,考查函數(shù)的零點個數(shù),著重考查分類討論思想19、(1)(2)【解題分析】
(1)利用向量的數(shù)量積化簡即可得,再根據(jù),求出的范圍結(jié)合圖像即可解決.(2)根據(jù)(1)求出,再根據(jù)正弦函數(shù)的單調(diào)性求出的單調(diào)區(qū)間即可.【題目詳解】解:(1)因為所以,所以,所以(2)解法一:令得因為函數(shù)在上是單調(diào)遞增函數(shù),所以存在,使得,所以有因為,所以所以,又因為,得所以從而有所以,所以解法二:由,得因為所以所以解得又所以【題目點撥】本題主要考查了正弦函數(shù)在給定區(qū)間是的最值以及根據(jù)根據(jù)函數(shù)的單調(diào)性求參數(shù).屬于中等題,解決本題的關(guān)鍵是記住正弦函數(shù)的單調(diào)性、最值等.20、(1)(1)或.【解題分析】
(1)運用絕對值的意義,去絕對值,解不等式,求并集即可;(1)求得|t﹣1|+|1t+3|的最小值,原不等式等價為|x+l|﹣|x﹣m|的最大值,由絕對值不等式的性質(zhì),以及絕對值不等式的解法,可得所求范圍.【題目詳解】解:(1)由題意可得|x﹣1|+|1x+3|>4,當x≥1時,x﹣1+1x+3>4,解得x≥1;當x<1時,1﹣x+1x+3>4,解得0<x<1;當x時,1﹣x﹣1x﹣3>4,解得x<﹣1.可得原不等式的解集為(﹣∞,﹣1)∪(0,+∞);(1)由(1)可得|t﹣1|+|1t+3|,可得t時,|t﹣1|+|1t+3|取得最小值,關(guān)于x的不等式|x+l|﹣|x﹣m|≥|t﹣1|+|1t+3|(t∈R)能成立,等價為|x+l|﹣|x﹣m|的最大值,由|x+l|﹣|x﹣m|≤|m+1|,可得|m+1|,解得m或m.【題目點撥】本題考查絕對值不等式的解法和絕對值不等式的性質(zhì)的運用,求最
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 餐飲店選址評估及合作開發(fā)合同
- 聘請傭人協(xié)議書范本模板
- 財務人員保密協(xié)議及財務審計合作合同
- 電商市場調(diào)研與運營優(yōu)化合同
- 財務咨詢保密協(xié)議及知識產(chǎn)權(quán)保護合同
- 汽車金融公司車輛股份投資與風險控制合同
- 財務經(jīng)理擔保及業(yè)績目標責任協(xié)議
- 礦產(chǎn)資源開采權(quán)轉(zhuǎn)讓與礦山生態(tài)修復合同范本
- 場地監(jiān)管廉政規(guī)范實施合同
- 銀行崗前培訓匯報
- 眼鏡店經(jīng)營管理制度
- 2025年湖北高考生物試卷真題及答案詳解(精校打印版)
- 2024年郴電國際招聘真題
- 學校五年發(fā)展規(guī)劃2026-2030年
- 2025重慶新華出版集團招聘18人筆試參考題庫附帶答案詳解析集合
- 新疆烏魯木齊市六校2023?2024學年高一下學期期末聯(lián)考 數(shù)學試題(含解析)
- 2025春季學期國開電大??啤豆芾韺W基礎》一平臺在線形考(形考任務一至四)試題及答案
- 腫瘤內(nèi)科常用化療藥物
- 2025年全國保密教育線上培訓考試試題庫附答案(完整版)含答案詳解
- 期末培優(yōu)拔高卷(試題)-2023-2024學年五年級下冊數(shù)學北師大版
- 中華民族共同體概論課件專家版2第二講 樹立正確的中華民族歷史觀
評論
0/150
提交評論