2023-2024學(xué)年福建省建陽市達標名校中考數(shù)學(xué)模試卷含解析_第1頁
2023-2024學(xué)年福建省建陽市達標名校中考數(shù)學(xué)模試卷含解析_第2頁
2023-2024學(xué)年福建省建陽市達標名校中考數(shù)學(xué)模試卷含解析_第3頁
2023-2024學(xué)年福建省建陽市達標名校中考數(shù)學(xué)模試卷含解析_第4頁
2023-2024學(xué)年福建省建陽市達標名校中考數(shù)學(xué)模試卷含解析_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學(xué)年福建省建陽市達標名校中考數(shù)學(xué)模試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.已知:如圖,在扇形中,,半徑,將扇形沿過點的直線折疊,點恰好落在弧上的點處,折痕交于點,則弧的長為()A. B. C. D.2.如圖,為等邊三角形,要在外部取一點,使得和全等,下面是兩名同學(xué)做法:()甲:①作的角平分線;②以為圓心,長為半徑畫弧,交于點,點即為所求;乙:①過點作平行于的直線;②過點作平行于的直線,交于點,點即為所求.A.兩人都正確 B.兩人都錯誤 C.甲正確,乙錯誤 D.甲錯誤,乙正確3.如圖,在△ABC中,點D是邊AB上的一點,∠ADC=∠ACB,AD=2,BD=6,則邊AC的長為()A.2 B.4 C.6 D.84.如圖,△ABC內(nèi)接于⊙O,AD為⊙O的直徑,交BC于點E,若DE=2,OE=3,則tan∠ACB·tan∠ABC=()A.2 B.3 C.4 D.55.如圖,a∥b,點B在直線b上,且AB⊥BC,∠1=40°,那么∠2的度數(shù)()A.40° B.50° C.60° D.90°6.已知☉O的半徑為5,且圓心O到直線l的距離是方程x2-4x-12=0的一個根,則直線l與圓的位置關(guān)系是()A.相交B.相切C.相離D.無法確定7.如圖,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,點F是AC的中點,AD與FE,CE分別交于點G、H,∠BCE=∠CAD,有下列結(jié)論:①圖中存在兩個等腰直角三角形;②△AHE≌△CBE;③BC?AD=AE2;④S△ABC=4S△ADF.其中正確的個數(shù)有()A.1 B.2 C.3 D.48.已知,則的值是A.60 B.64 C.66 D.729.下列運算正確的是()A.a(chǎn)2?a3=a6B.a(chǎn)3+a2=a5C.(a2)4=a8D.a(chǎn)3﹣a2=a10.如圖,已知Rt△ABC中,∠BAC=90°,將△ABC繞點A順時針旋轉(zhuǎn),使點D落在射線CA上,DE的延長線交BC于F,則∠CFD的度數(shù)為()A.80° B.90° C.100° D.120°二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在△ABC中,P,Q分別為AB,AC的中點.若S△APQ=1,則S四邊形PBCQ=__.12.將兩張三角形紙片如圖擺放,量得∠1+∠2+∠3+∠4=220°,則∠5=__.13.如圖,等邊△ABC的邊長為6,∠ABC,∠ACB的角平分線交于點D,過點D作EF∥BC,交AB、CD于點E、F,則EF的長度為_____.14.當__________時,二次函數(shù)有最小值___________.15.不等式組的非負整數(shù)解的個數(shù)是_____.16.因式分解:=_______________.三、解答題(共8題,共72分)17.(8分)如圖,已知在△ABC中,AB=AC=5,cosB=,P是邊AB上一點,以P為圓心,PB為半徑的⊙P與邊BC的另一個交點為D,聯(lián)結(jié)PD、AD.(1)求△ABC的面積;(2)設(shè)PB=x,△APD的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;(3)如果△APD是直角三角形,求PB的長.18.(8分)如圖,在△ABC中,∠B=∠C=40°,點D、點E分別從點B、點C同時出發(fā),在線段BC上作等速運動,到達C點、B點后運動停止.求證:△ABE≌△ACD;若AB=BE,求∠DAE的度數(shù);拓展:若△ABD的外心在其內(nèi)部時,求∠BDA的取值范圍.19.(8分)現(xiàn)有一次函數(shù)y=mx+n和二次函數(shù)y=mx2+nx+1,其中m≠0,若二次函數(shù)y=mx2+nx+1經(jīng)過點(2,0),(3,1),試分別求出兩個函數(shù)的解析式.若一次函數(shù)y=mx+n經(jīng)過點(2,0),且圖象經(jīng)過第一、三象限.二次函數(shù)y=mx2+nx+1經(jīng)過點(a,y1)和(a+1,y2),且y1>y2,請求出a的取值范圍.若二次函數(shù)y=mx2+nx+1的頂點坐標為A(h,k)(h≠0),同時二次函數(shù)y=x2+x+1也經(jīng)過A點,已知﹣1<h<1,請求出m的取值范圍.20.(8分)如圖,在△ABC中,∠C=90°,BC=4,AC=1.點P是斜邊AB上一點,過點P作PM⊥AB交邊AC或BC于點M.又過點P作AC的平行線,與過點M的PM的垂線交于點N.設(shè)邊AP=x,△PMN與△ABC重合部分圖形的周長為y.(1)AB=.(2)當點N在邊BC上時,x=.(1)求y與x之間的函數(shù)關(guān)系式.(4)在點N位于BC上方的條件下,直接寫出過點N與△ABC一個頂點的直線平分△ABC面積時x的值.21.(8分)在“打造青山綠山,建設(shè)美麗中國”的活動中,某學(xué)校計劃組織全校1441名師生到相關(guān)部門規(guī)劃的林區(qū)植樹,經(jīng)過研究,決定租用當?shù)刈廛嚬疽还?2輛A、B兩種型號客車作為交通工具,下表是租車公司提供給學(xué)校有關(guān)兩種型號客車的載客量和租金信息:型號載客量租金單價A30人/輛380元/輛B20人/輛280元/輛注:載客量指的是每輛客車最多可載該校師生的人數(shù).(1)設(shè)租用A型號客車x輛,租車總費用為y元,求y與x的函數(shù)解析式。(2)若要使租車總費用不超過19720元,一共有幾種租車方案?那種租車方案最省錢?22.(10分)如圖1,點P是平面直角坐標系中第二象限內(nèi)的一點,過點P作PA⊥y軸于點A,點P繞點A順時針旋轉(zhuǎn)60°得到點P',我們稱點P'是點P的“旋轉(zhuǎn)對應(yīng)點”.(1)若點P(﹣4,2),則點P的“旋轉(zhuǎn)對應(yīng)點”P'的坐標為;若點P的“旋轉(zhuǎn)對應(yīng)點”P'的坐標為(﹣5,16)則點P的坐標為;若點P(a,b),則點P的“旋轉(zhuǎn)對應(yīng)點”P'的坐標為;(2)如圖2,點Q是線段AP'上的一點(不與A、P'重合),點Q的“旋轉(zhuǎn)對應(yīng)點”是點Q',連接PP'、QQ',求證:PP'∥QQ';(3)點P與它的“旋轉(zhuǎn)對應(yīng)點”P'的連線所在的直線經(jīng)過點(,6),求直線PP'與x軸的交點坐標.23.(12分)如圖,大樓AB的高為16m,遠處有一塔CD,小李在樓底A處測得塔頂D處的仰角為60°,在樓頂B處測得塔頂D處的仰角為45°,其中A、C兩點分別位于B、D兩點正下方,且A、C兩點在同一水平線上,求塔CD的高.(=1.73,結(jié)果保留一位小數(shù).)24.如圖所示是一幢住房的主視圖,已知:,房子前后坡度相等,米,米,設(shè)后房檐到地面的高度為米,前房檐到地面的高度米,求的值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

如圖,連接OD.根據(jù)折疊的性質(zhì)、圓的性質(zhì)推知△ODB是等邊三角形,則易求∠AOD=110°-∠DOB=50°;然后由弧長公式弧長的公式來求的長【詳解】解:如圖,連接OD.解:如圖,連接OD.

根據(jù)折疊的性質(zhì)知,OB=DB.

又∵OD=OB,

∴OD=OB=DB,即△ODB是等邊三角形,

∴∠DOB=60°.

∵∠AOB=110°,

∴∠AOD=∠AOB-∠DOB=50°,

∴的長為=5π.

故選D.【點睛】本題考查了弧長的計算,翻折變換(折疊問題).折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.所以由折疊的性質(zhì)推知△ODB是等邊三角形是解答此題的關(guān)鍵之處.2、A【解析】

根據(jù)題意先畫出相應(yīng)的圖形,然后進行推理論證即可得出結(jié)論.【詳解】甲的作法如圖一:∵為等邊三角形,AD是的角平分線∴由甲的作法可知,在和中,故甲的作法正確;乙的作法如圖二:在和中,故乙的作法正確;故選:A.【點睛】本題主要借助尺規(guī)作圖考查全等三角形的判定,掌握全等三角形的判定方法是解題的關(guān)鍵.3、B【解析】

證明△ADC∽△ACB,根據(jù)相似三角形的性質(zhì)可推導(dǎo)得出AC2=AD?AB,由此即可解決問題.【詳解】∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴,∴AC2=AD?AB=2×8=16,∵AC>0,∴AC=4,故選B.【點睛】本題考查相似三角形的判定和性質(zhì)、解題的關(guān)鍵是正確尋找相似三角形解決問題.4、C【解析】

如圖(見解析),連接BD、CD,根據(jù)圓周角定理可得,再根據(jù)相似三角形的判定定理可得,然后由相似三角形的性質(zhì)可得,同理可得;又根據(jù)圓周角定理可得,再根據(jù)正切的定義可得,然后求兩個正切值之積即可得出答案.【詳解】如圖,連接BD、CD在和中,同理可得:,即為⊙O的直徑故選:C.【點睛】本題考查了圓周角定理、相似三角形的判定定理與性質(zhì)、正切函數(shù)值等知識點,通過作輔助線,結(jié)合圓周角定理得出相似三角形是解題關(guān)鍵.5、B【解析】分析:根據(jù)“平行線的性質(zhì)、平角的定義和垂直的定義”進行分析計算即可.詳解:∵AB⊥BC,∴∠ABC=90°,∵點B在直線b上,∴∠1+∠ABC+∠3=180°,∴∠3=180°-∠1-90°=50°,∵a∥b,∴∠2=∠3=50°.故選B.點睛:熟悉“平行線的性質(zhì)、平角的定義和垂直的定義”是正確解答本題的關(guān)鍵.6、C【解析】

首先求出方程的根,再利用半徑長度,由點O到直線a的距離為d,若d<r,則直線與圓相交;若d=r,則直線與圓相切;若d>r,則直線與與圓相離.【詳解】∵x2-4x-12=0,

(x+2)(x-6)=0,

解得:x1=-2(不合題意舍去),x2=6,

∵點O到直線l距離是方程x2-4x-12=0的一個根,即為6,

∴點O到直線l的距離d=6,r=5,

∴d>r,

∴直線l與圓相離.故選:C【點睛】本題考核知識點:直線與圓的位置關(guān)系.解題關(guān)鍵點:理解直線與圓的位置關(guān)系的判定方法.7、C【解析】

①圖中有3個等腰直角三角形,故結(jié)論錯誤;②根據(jù)ASA證明即可,結(jié)論正確;③利用面積法證明即可,結(jié)論正確;④利用三角形的中線的性質(zhì)即可證明,結(jié)論正確.【詳解】∵CE⊥AB,∠ACE=45°,∴△ACE是等腰直角三角形,∵AF=CF,∴EF=AF=CF,∴△AEF,△EFC都是等腰直角三角形,∴圖中共有3個等腰直角三角形,故①錯誤,∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC,∴∠EAH=∠BCE,∵AE=EC,∠AEH=∠CEB=90°,∴△AHE≌△CBE,故②正確,∵S△ABC=BC?AD=AB?CE,AB=AC=AE,AE=CE,∴BC?AD=CE2,故③正確,∵AB=AC,AD⊥BC,∴BD=DC,∴S△ABC=2S△ADC,∵AF=FC,∴S△ADC=2S△ADF,∴S△ABC=4S△ADF.故選C.【點睛】本題考查相似三角形的判定和性質(zhì)、等腰直角三角形的判定和性質(zhì)、三角形的面積等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于中考選擇題中的壓軸題.8、A【解析】

將代入原式,計算可得.【詳解】解:當時,原式,故選A.【點睛】本題主要考查分式的加減法,解題的關(guān)鍵是熟練掌握完全平方公式.9、C【解析】

根據(jù)同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加;合并同類項的法則:把同類項的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變;冪的乘方法則:底數(shù)不變,指數(shù)相乘進行計算即可.【詳解】A、a2?a3=a5,故原題計算錯誤;B、a3和a2不是同類項,不能合并,故原題計算錯誤;C、(a2)4=a8,故原題計算正確;D、a3和a2不是同類項,不能合并,故原題計算錯誤;故選:C.【點睛】此題主要考查了冪的乘方、同底數(shù)冪的乘法,以及合并同類項,關(guān)鍵是掌握計算法則.10、B【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì)得出全等,推出∠B=∠D,求出∠B+∠BEF=∠D+∠AED=90°,根據(jù)三角形外角性質(zhì)得出∠CFD=∠B+∠BEF,代入求出即可.【詳解】解:∵將△ABC繞點A順時針旋轉(zhuǎn)得到△ADE,∴△ABC≌△ADE,∴∠B=∠D,∵∠CAB=∠BAD=90°,∠BEF=∠AED,∠B+∠BEF+∠BFE=180°,∠D+∠BAD+∠AED=180°,∴∠B+∠BEF=∠D+∠AED=180°﹣90°=90°,∴∠CFD=∠B+∠BEF=90°,故選:B.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)和判定,三角形內(nèi)角和定理,三角形外角性質(zhì)的應(yīng)用,掌握旋轉(zhuǎn)變換的性質(zhì)是解題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】

根據(jù)三角形的中位線定理得到PQ=BC,得到相似比為,再根據(jù)相似三角形面積之比等于相似比的平方,可得到結(jié)果.【詳解】解:∵P,Q分別為AB,AC的中點,∴PQ∥BC,PQ=BC,∴△APQ∽△ABC,∴=()2=,∵S△APQ=1,∴S△ABC=4,∴S四邊形PBCQ=S△ABC﹣S△APQ=1,故答案為1.【點睛】本題考查相似三角形的判定和性質(zhì),三角形中位線定理等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.12、40°【解析】

直接利用三角形內(nèi)角和定理得出∠6+∠7的度數(shù),進而得出答案.【詳解】如圖所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,

∵∠1+∠2+∠3+∠4=220°,

∴∠1+∠2+∠6+∠3+∠4+∠7=360°,

∴∠6+∠7=140°,

∴∠5=180°-(∠6+∠7)=40°.

故答案為40°.【點睛】主要考查了三角形內(nèi)角和定理,正確應(yīng)用三角形內(nèi)角和定理是解題關(guān)鍵.13、4【解析】試題分析:根據(jù)BD和CD分別平分∠ABC和∠ACB,和EF∥BC,利用兩直線平行,內(nèi)錯角相等和等量代換,求證出BE=DE,DF=FC.然后即可得出答案.解:∵在△ABC中,BD和CD分別平分∠ABC和∠ACB,∴∠EBD=∠DBC,∠FCD=∠DCB,∵EF∥BC,∴∠EBD=∠DBC=∠EDB,∠FCD=∠DCB=∠FDC,∴BE=DE,DF=EC,∵EF=DE+DF,∴EF=EB+CF=2BE,∵等邊△ABC的邊長為6,∵EF∥BC,∴△ADE是等邊三角形,∴EF=AE=2BE,∴EF==,故答案為4考點:等邊三角形的判定與性質(zhì);平行線的性質(zhì).14、15【解析】二次函數(shù)配方,得:,所以,當x=1時,y有最小值5,故答案為1,5.15、1【解析】

先分別解兩個不等式,求出它們的解集,再求兩個不等式解集的公共部分即可得到不等式組的解集.【詳解】解:解①得:x≥﹣,解②得:x<1,∴不等式組的解集為﹣≤x<1,∴其非負整數(shù)解為0、1、2、3、4共1個,故答案為1.【點睛】本題考查了不等式組的解法,先分別解兩個不等式,求出它們的解集,再求兩個不等式解集的公共部分.不等式組解集的確定方法是:同大取大,同小取小,大小小大取中間,大大小小無解.16、a(a+b)(a-b).【解析】分析:本題考查的是提公因式法和利用平方差公式分解因式.解析:原式=a(a+b)(a-b).故答案為a(a+b)(a-b).三、解答題(共8題,共72分)17、(1)12(2)y=(0<x<5)(3)或【解析】試題分析:(1)過點A作AH⊥BC于點H,根據(jù)cosB=求得BH的長,從而根據(jù)已知可求得AH的長,BC的長,再利用三角形的面積公式即可得;(2)先證明△BPD∽△BAC,得到=,再根據(jù),代入相關(guān)的量即可得;(3)分情況進行討論即可得.試題解析:(1)過點A作AH⊥BC于點H,則∠AHB=90°,∴cosB=,∵cosB=,AB=5,∴BH=4,∴AH=3,∵AB=AC,∴BC=2BH=8,∴S△ABC=×8×3=12(2)∵PB=PD,∴∠B=∠PDB,∵AB=AC,∴∠B=∠C,∴∠C=∠PDB,∴△BPD∽△BAC,∴,即,解得=,∴,∴,解得y=(0<x<5);(3)∠APD<90°,過C作CE⊥AB交BA延長線于E,可得cos∠CAE=,①當∠ADP=90°時,cos∠APD=cos∠CAE=,即,解得x=;②當∠PAD=90°時,,解得x=,綜上所述,PB=或.【點睛】本題考查了相似三角形的判定與性質(zhì)、底在同一直線上且高相等的三角形面積的關(guān)系等,結(jié)合圖形及已知選擇恰當?shù)闹R進行解答是關(guān)鍵.18、(1)證明見解析;(2);拓展:【解析】

(1)由題意得BD=CE,得出BE=CD,證出AB=AC,由SAS證明△ABE≌△ACD即可;(2)由等腰三角形的性質(zhì)和三角形內(nèi)角和定理求出∠BEA=∠EAB=70°,證出AC=CD,由等腰三角形的性質(zhì)得出∠ADC=∠DAC=70°,即可得出∠DAE的度數(shù);拓展:對△ABD的外心位置進行推理,即可得出結(jié)論.【詳解】(1)證明:∵點D、點E分別從點B、點C同時出發(fā),在線段BC上作等速運動,∴BD=CE,∴BC-BD=BC-CE,即BE=CD,∵∠B=∠C=40°,∴AB=AC,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS);(2)解:∵∠B=∠C=40°,AB=BE,∴∠BEA=∠EAB=(180°-40°)=70°,∵BE=CD,AB=AC,∴AC=CD,∴∠ADC=∠DAC=(180°-40°)=70°,∴∠DAE=180°-∠ADC-∠BEA=180°-70°-70°=40°;拓展:解:若△ABD的外心在其內(nèi)部時,則△ABD是銳角三角形.∴∠BAD=140°-∠BDA<90°.∴∠BDA>50°,又∵∠BDA<90°,∴50°<∠BDA<90°.【點睛】本題考查了全等三角形的判定與性質(zhì)、等腰三角形的性質(zhì)、三角形內(nèi)角和定理、三角形的外心等知識;熟練掌握等腰三角形的性質(zhì)是解題的關(guān)鍵.19、(1)y=x﹣2,y=x2++1;(2)a<;(3)m<﹣2或m>1.【解析】

(1)直接將點代入函數(shù)解析式,用待定系數(shù)法即可求解函數(shù)解析式;(2)點(2,1)代入一次函數(shù)解析式,得到n=?2m,利用m與n的關(guān)系能求出二次函數(shù)對稱軸x=1,由一次函數(shù)經(jīng)過一、三象限可得m>1,確定二次函數(shù)開口向上,此時當y1>y2,只需讓a到對稱軸的距離比a+1到對稱軸的距離大即可求a的范圍.(3)將A(h,k)分別代入兩個二次函數(shù)解析式,再結(jié)合對稱抽得h=,將得到的三個關(guān)系聯(lián)立即可得到,再由題中已知?1<h<1,利用h的范圍求出m的范圍.【詳解】(1)將點(2,1),(3,1),代入一次函數(shù)y=mx+n中,,解得,∴一次函數(shù)的解析式是y=x﹣2,再將點(2,1),(3,1),代入二次函數(shù)y=mx2+nx+1,,解得,∴二次函數(shù)的解析式是.(2)∵一次函數(shù)y=mx+n經(jīng)過點(2,1),∴n=﹣2m,∵二次函數(shù)y=mx2+nx+1的對稱軸是x=,∴對稱軸為x=1,又∵一次函數(shù)y=mx+n圖象經(jīng)過第一、三象限,∴m>1,∵y1>y2,∴1﹣a>1+a﹣1,∴a<.(3)∵y=mx2+nx+1的頂點坐標為A(h,k),∴k=mh2+nh+1,且h=,又∵二次函數(shù)y=x2+x+1也經(jīng)過A點,∴k=h2+h+1,∴mh2+nh+1=h2+h+1,∴,又∵﹣1<h<1,∴m<﹣2或m>1.【點睛】本題考點:點與函數(shù)的關(guān)系;二次函數(shù)的對稱軸與函數(shù)值關(guān)系;待定系數(shù)法求函數(shù)解析式;不等式的解法;數(shù)形結(jié)合思想是解決二次函數(shù)問題的有效方法.20、(1)2;(2);(1)詳見解析;(4)滿足條件的x的值為.【解析】

(1)根據(jù)勾股定理可以直接求出(2)先證明四邊形PAMN是平行四邊形,再根據(jù)三角函數(shù)值求解(1)分情況根據(jù)t的大小求出不同的函數(shù)關(guān)系式(4)不同條件下:當點G是AC中點時和當點D是AB中點時,根據(jù)相似三角形的性質(zhì)求解.【詳解】解:(1)在中,,故答案為2.(2)如圖1中,∴四邊形PAMN是平行四邊形,當點在上時,,.(1)①當時,如圖1,.②當時,如圖2,y③當時,如圖1,(4)如圖4中,當點是中點時,滿足條件.如圖2中,當點是中點時,滿足條件..綜上所述,滿足條件的x的值為或.【點睛】此題重點考查學(xué)生對一次函數(shù)的應(yīng)用,勾股定理,平行四邊形的判定,相似三角形的性質(zhì)和三角函數(shù)值的綜合應(yīng)用能力,熟練掌握勾股定理和三角函數(shù)值的解法是解題的關(guān)鍵.21、(1)y=100x+17360;(2)3種方案:A型車21輛,B型車41輛最省錢.【解析】

(1)根據(jù)租車總費用=A、B兩種車的費用之和,列出函數(shù)關(guān)系式即可;

(2)列出不等式,求出自變量x的取值范圍,利用函數(shù)的性質(zhì)即可解決問題.【詳解】(1)由題意:y=380x+280(62-x)=100x+17360,∵30x+20(62-x)≥1441,∴x≥20.1,又∵x為整數(shù),∴x的取值范圍為21≤x≤62的整數(shù);(2)由題意100x+17360≤19720,∴x≤23.6,∴21≤x≤23,∴共有3種租車方案,x=21時,y有最小值=1.即租租A型車21輛,B型車41輛最省錢.【點睛】本題考查一次函數(shù)的應(yīng)用、一元一次不等式的應(yīng)用等知識,解題的關(guān)鍵是理解題意,學(xué)會利用函數(shù)的性質(zhì)解決最值問題.22、(1)(﹣2,2+2),(﹣10,16﹣5),(,b﹣a);(2)見解析;(3)直線PP'與x軸的交點坐標(﹣,0)【解析】

(1)①當P(-4,2)時,OA=2,PA=4,由旋轉(zhuǎn)知,∠P'AH=30°,進而P'H=P'A=2,AH=P'H=2,即可得出結(jié)論;②當P'(-5,16)時,確定出P'A=10,AH=5,由旋轉(zhuǎn)知,PA=PA'=10,OA=OH-AH=16-5,即可得出結(jié)論;③當P(a,b)時,同①的方法得,即可得出結(jié)論;(2)先判斷出∠BQQ'=60°,進而得出∠PAP'=∠PP'A=60°,即可得出∠P'QQ'=∠PAP'=60°,即可得出結(jié)論;(3)先確定出yPP'=x+3,即可得出結(jié)論.【詳解】解:(1)如圖1,①當P(﹣4,2)時,∵PA⊥y軸,∴∠PAH=90°,OA=2,PA=4,由旋轉(zhuǎn)知,P'A=4,∠PAP'=60°,∴∠P'AH=30°,在Rt△P'AH中,P'H=P'A=2,∴AH=P'H=2,∴OH=OA+AH=2+2,∴P

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論