




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆河北省承德市名校中考數(shù)學(xué)押題卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.的平方根是()A.2 B. C.±2 D.±2.如圖,在中,點D為AC邊上一點,則CD的長為()A.1 B. C.2 D.3.下列四個數(shù)表示在數(shù)軸上,它們對應(yīng)的點中,離原點最遠的是()A.﹣2 B.﹣1 C.0 D.14.如圖,CD是⊙O的弦,O是圓心,把⊙O的劣弧沿著CD對折,A是對折后劣弧上的一點,∠CAD=100°,則∠B的度數(shù)是()A.100° B.80° C.60° D.50°5.如圖,已知直線,點E,F(xiàn)分別在、上,,如果∠B=40°,那么()A.20° B.40° C.60° D.80°6.已知某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的側(cè)面積等于()A.12πcm2B.15πcm2C.24πcm2D.30πcm27.如圖,數(shù)軸上有A,B,C,D四個點,其中絕對值最小的數(shù)對應(yīng)的點是()A.點A B.點B C.點C D.點D8.如圖,圓弧形拱橋的跨徑米,拱高米,則拱橋的半徑為()米A. B. C. D.9.的值是A.±3 B.3 C.9 D.8110.如圖,把一個矩形紙片ABCD沿EF折疊后,點D、C分別落在D′、C′的位置,若∠EFB=65°,則∠AED′為()。A.70° B.65° C.50° D.25°11.如圖,實數(shù)﹣3、x、3、y在數(shù)軸上的對應(yīng)點分別為M、N、P、Q,這四個數(shù)中絕對值最小的數(shù)對應(yīng)的點是()A.點M B.點N C.點P D.點Q12.下列調(diào)查中,最適合采用全面調(diào)查(普查)方式的是()A.對重慶市初中學(xué)生每天閱讀時間的調(diào)查B.對端午節(jié)期間市場上粽子質(zhì)量情況的調(diào)查C.對某批次手機的防水功能的調(diào)查D.對某校九年級3班學(xué)生肺活量情況的調(diào)查二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在△ABC中,∠C=120°,AB=4cm,兩等圓⊙A與⊙B外切,則圖中兩個扇形的面積之和(即陰影部分)為cm2(結(jié)果保留π).14.計算:6﹣=_____15.如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點E、F分別在BC和CD上,下列結(jié)論:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=.其中正確的序號是(把你認為正確的都填上).16.如圖,反比例函數(shù)y=(x<0)的圖象經(jīng)過點A(﹣2,2),過點A作AB⊥y軸,垂足為B,在y軸的正半軸上取一點P(0,t),過點P作直線OA的垂線l,以直線l為對稱軸,點B經(jīng)軸對稱變換得到的點B'在此反比例函數(shù)的圖象上,則t的值是()A.1+ B.4+ C.4 D.-1+17.將161000用科學(xué)記數(shù)法表示為1.61×10n,則n的值為________.18.在Rt△ABC中,∠C=90°,AB=2,BC=,則sin=_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,△ABC中,∠C=90°,∠A=30°.用尺規(guī)作圖作AB邊上的中垂線DE,交AC于點D,交AB于點E.(保留作圖痕跡,不要求寫作法和證明);連接BD,求證:BD平分∠CBA.20.(6分)在甲、乙兩個不透明的布袋里,都裝有3個大小、材質(zhì)完全相同的小球,其中甲袋中的小球上分別標有數(shù)字1,1,2;乙袋中的小球上分別標有數(shù)字﹣1,﹣2,1.現(xiàn)從甲袋中任意摸出一個小球,記其標有的數(shù)字為x,再從乙袋中任意摸出一個小球,記其標有的數(shù)字為y,以此確定點M的坐標(x,y).請你用畫樹狀圖或列表的方法,寫出點M所有可能的坐標;求點M(x,y)在函數(shù)y=﹣2x21.(6分)“綠水青山就是金山銀山”,北京市民積極參與義務(wù)植樹活動.小武同學(xué)為了了解自己小區(qū)300戶家庭在2018年4月份義務(wù)植樹的數(shù)量,進行了抽樣調(diào)查,隨即抽取了其中30戶家庭,收集的數(shù)據(jù)如下(單位:棵):112323233433433534344545343456(1)對以上數(shù)據(jù)進行整理、描述和分析:①繪制如下的統(tǒng)計圖,請補充完整;②這30戶家庭2018年4月份義務(wù)植樹數(shù)量的平均數(shù)是______,眾數(shù)是______;(2)“互聯(lián)網(wǎng)+全民義務(wù)植樹”是新時代首都全民義務(wù)植樹組織形式和盡責(zé)方式的一大創(chuàng)新,2018年首次推出義務(wù)植樹網(wǎng)上預(yù)約服務(wù),小武同學(xué)所調(diào)查的這30戶家庭中有7戶家庭采用了網(wǎng)上預(yù)約義務(wù)植樹這種方式,由此可以估計該小區(qū)采用這種形式的家庭有______戶.22.(8分)如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=kx的圖象交于C,D兩點,與x,y軸交于B,A兩點,且tan∠ABO=12,OB=4,OE=2(1)求一次函數(shù)的解析式和反比例函數(shù)的解析式;(2)求△OCD的面積;(3)根據(jù)圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的值時,自變量x的取值范圍.23.(8分)為提高市民的環(huán)保意識,倡導(dǎo)“節(jié)能減排,綠色出行”,某市計劃在城區(qū)投放一批“共享單車”這批單車分為A,B兩種不同款型,其中A型車單價400元,B型車單價320元.今年年初,“共享單車”試點投放在某市中心城區(qū)正式啟動.投放A,B兩種款型的單車共100輛,總價值36800元.試問本次試點投放的A型車與B型車各多少輛?試點投放活動得到了廣大市民的認可,該市決定將此項公益活動在整個城區(qū)全面鋪開.按照試點投放中A,B兩車型的數(shù)量比進行投放,且投資總價值不低于184萬元.請問城區(qū)10萬人口平均每100人至少享有A型車與B型車各多少輛?24.(10分)如圖,圖①是某電腦液晶顯示器的側(cè)面圖,顯示屏AO可以繞點O旋轉(zhuǎn)一定的角度.研究表明:顯示屏頂端A與底座B的連線AB與水平線BC垂直時(如圖②),人觀看屏幕最舒適.此時測得∠BAO=15°,AO=30cm,∠OBC=45°,求AB的長度.(結(jié)果精確到0.1cm)25.(10分)如圖,AB是半圓O的直徑,D為弦BC的中點,延長OD交弧BC于點E,點F為OD的延長線上一點且滿足∠OBC=∠OFC,求證:CF為⊙O的切線;若四邊形ACFD是平行四邊形,求sin∠BAD的值.26.(12分)如圖,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,連結(jié)AE、BF.求證:(1)AE=BF;(2)AE⊥BF.27.(12分)如圖,AD、BC相交于點O,AD=BC,∠C=∠D=90°.求證:△ACB≌△BDA;若∠ABC=36°,求∠CAO度數(shù).
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
先化簡,然后再根據(jù)平方根的定義求解即可.【詳解】∵=2,2的平方根是±,∴的平方根是±.故選D.【點睛】本題考查了平方根的定義以及算術(shù)平方根,先把正確化簡是解題的關(guān)鍵,本題比較容易出錯.2、C【解析】
根據(jù)∠DBC=∠A,∠C=∠C,判定△BCD∽△ACB,根據(jù)相似三角形對應(yīng)邊的比相等得到代入求值即可.【詳解】∵∠DBC=∠A,∠C=∠C,∴△BCD∽△ACB,∴∴∴CD=2.故選:C.【點睛】主要考查相似三角形的判定與性質(zhì),掌握相似三角形的判定定理是解題的關(guān)鍵.3、A【解析】
由于要求四個數(shù)的點中距離原點最遠的點,所以求這四個點對應(yīng)的實數(shù)絕對值即可求解.【詳解】∵|-1|=1,|-1|=1,∴|-1|>|-1|=1>0,∴四個數(shù)表示在數(shù)軸上,它們對應(yīng)的點中,離原點最遠的是-1.故選A.【點睛】本題考查了實數(shù)與數(shù)軸的對應(yīng)關(guān)系,以及估算無理數(shù)大小的能力,也利用了數(shù)形結(jié)合的思想.4、B【解析】試題分析:如圖,翻折△ACD,點A落在A′處,可知∠A=∠A′=100°,然后由圓內(nèi)接四邊形可知∠A′+∠B=180°,解得∠B=80°.故選:B5、C【解析】
根據(jù)平行線的性質(zhì),可得的度數(shù),再根據(jù)以及平行線的性質(zhì),即可得出的度數(shù).【詳解】∵,,∴,∵,∴,∵,∴,故選C.【點睛】本題主要考查了平行線的性質(zhì)的運用,解題時注意:兩直線平行,同旁內(nèi)角互補,且內(nèi)錯角相等.6、B【解析】由三視圖可知這個幾何體是圓錐,高是4cm,底面半徑是3cm,所以母線長是(cm),∴側(cè)面積=π×3×5=15π(cm2),故選B.7、B【解析】試題分析:在數(shù)軸上,離原點越近則說明這個點所表示的數(shù)的絕對值越小,根據(jù)數(shù)軸可知本題中點B所表示的數(shù)的絕對值最?。蔬xB.8、A【解析】試題分析:根據(jù)垂徑定理的推論,知此圓的圓心在CD所在的直線上,設(shè)圓心是O.連接OA.根據(jù)垂徑定理和勾股定理求解.得AD=6設(shè)圓的半徑是r,根據(jù)勾股定理,得r2=36+(r﹣4)2,解得r=6.5考點:垂徑定理的應(yīng)用.9、C【解析】試題解析:∵∴的值是3故選C.10、C【解析】
首先根據(jù)AD∥BC,求出∠FED的度數(shù),然后根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等,則可知∠DEF=∠FED′,最后求得∠AED′的大?。驹斀狻拷猓骸逜D∥BC,∴∠EFB=∠FED=65°,由折疊的性質(zhì)知,∠DEF=∠FED′=65°,∴∠AED′=180°-2∠FED=50°,故選:C.【點睛】此題考查了長方形的性質(zhì)與折疊的性質(zhì).此題比較簡單,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用.11、D【解析】∵實數(shù)-3,x,3,y在數(shù)軸上的對應(yīng)點分別為M、N、P、Q,
∴原點在點M與N之間,
∴這四個數(shù)中絕對值最大的數(shù)對應(yīng)的點是點Q.
故選D.12、D【解析】
A、對重慶市初中學(xué)生每天閱讀時間的調(diào)查,調(diào)查范圍廣適合抽樣調(diào)查,故A錯誤;B、對端午節(jié)期間市場上粽子質(zhì)量情況的調(diào)查,調(diào)查具有破壞性,適合抽樣調(diào)查,故B錯誤;C、對某批次手機的防水功能的調(diào)查,調(diào)查具有破壞性,適合抽樣調(diào)查,故C錯誤;D、對某校九年級3班學(xué)生肺活量情況的調(diào)查,人數(shù)較少,適合普查,故D正確;故選D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、.【解析】
圖中陰影部分的面積就是兩個扇形的面積,圓A,B的半徑為2cm,則根據(jù)扇形面積公式可得陰影面積.【詳解】(cm2).故答案為.考點:1、扇形的面積公式;2、兩圓相外切的性質(zhì).14、3【解析】
按照二次根式的運算法則進行運算即可.【詳解】【點睛】本題考查的知識點是二次根式的運算,解題關(guān)鍵是注意化簡算式.15、①②④【解析】分析:∵四邊形ABCD是正方形,∴AB=AD?!摺鰽EF是等邊三角形,∴AE=AF。∵在Rt△ABE和Rt△ADF中,AB=AD,AE=AF,∴Rt△ABE≌Rt△ADF(HL)?!郆E=DF。∵BC=DC,∴BC﹣BE=CD﹣DF?!郈E=CF?!啖僬f法正確?!逤E=CF,∴△ECF是等腰直角三角形?!唷螩EF=45°?!摺螦EF=60°,∴∠AEB=75°?!啖谡f法正確。如圖,連接AC,交EF于G點,∴AC⊥EF,且AC平分EF。∵∠CAD≠∠DAF,∴DF≠FG?!郆E+DF≠EF?!啖壅f法錯誤?!逧F=2,∴CE=CF=。設(shè)正方形的邊長為a,在Rt△ADF中,,解得,∴。∴?!啖苷f法正確。綜上所述,正確的序號是①②④。16、A【解析】
根據(jù)反比例函數(shù)圖象上點的坐標特征由A點坐標為(-2,2)得到k=-4,即反比例函數(shù)解析式為y=-,且OB=AB=2,則可判斷△OAB為等腰直角三角形,所以∠AOB=45°,再利用PQ⊥OA可得到∠OPQ=45°,然后軸對稱的性質(zhì)得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y軸,則點B的坐標可表示為(-,t),于是利用PB=PB′得t-2=|-|=,然后解方程可得到滿足條件的t的值.【詳解】如圖,∵點A坐標為(-2,2),∴k=-2×2=-4,∴反比例函數(shù)解析式為y=-,∵OB=AB=2,∴△OAB為等腰直角三角形,∴∠AOB=45°,∵PQ⊥OA,∴∠OPQ=45°,∵點B和點B′關(guān)于直線l對稱,∴PB=PB′,BB′⊥PQ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,∴B′P⊥y軸,∴點B′的坐標為(-,t),∵PB=PB′,∴t-2=|-|=,整理得t2-2t-4=0,解得t1=,t2=1-(不符合題意,舍去),∴t的值為.故選A.【點睛】本題是反比例函數(shù)的綜合題,解決本題要掌握反比例函數(shù)圖象上點的坐標特征、等腰直角三角形的性質(zhì)和軸對稱的性質(zhì)及會用求根公式法解一元二次方程.17、5【解析】
【科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負數(shù).【詳解】∵161000=1.61×105.∴n=5.故答案為5.【點睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.18、【解析】
根據(jù)∠A的正弦求出∠A=60°,再根據(jù)30°的正弦值求解即可.【詳解】解:∵,∴∠A=60°,∴.故答案為.【點睛】本題考查了特殊角的三角函數(shù)值,熟記30°、45°、60°角的三角函數(shù)值是解題的關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)作圖見解析;(2)證明見解析.【解析】
(1)分別以A、B為圓心,以大于AB的長度為半徑畫弧,過兩弧的交點作直線,交AC于點D,AB于點E,直線DE就是所要作的AB邊上的中垂線;
(2)根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得AD=BD,再根據(jù)等邊對等角的性質(zhì)求出∠ABD=∠A=30°,然后求出∠CBD=30°,從而得到BD平分∠CBA.【詳解】(1)解:如圖所示,DE就是要求作的AB邊上的中垂線;(2)證明:∵DE是AB邊上的中垂線,∠A=30°,∴AD=BD,∴∠ABD=∠A=30°,∵∠C=90°,∴∠ABC=90°﹣∠A=90°﹣30°=60°,∴∠CBD=∠ABC﹣∠ABD=60°﹣30°=30°,∴∠ABD=∠CBD,∴BD平分∠CBA.【點睛】考查線段的垂直平分線的作法以及角平分線的判定,熟練掌握線段的垂直平分弦的作法是解題的關(guān)鍵.20、(1)樹狀圖見解析,則點M所有可能的坐標為:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2)29【解析】試題分析:(1)畫出樹狀圖,可求得所有等可能的結(jié)果;(2)由點M(x,y)在函數(shù)y=﹣2x試題解析:(1)樹狀圖如下圖:則點M所有可能的坐標為:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2)∵點M(x,y)在函數(shù)y=﹣2x∴點M(x,y)在函數(shù)y=﹣2x的圖象上的概率為:2考點:列表法或樹狀圖法求概率.21、(1)3.4棵、3棵;(2)1.【解析】
(1)①由已知數(shù)據(jù)知3棵的有12人、4棵的有8人,據(jù)此補全圖形可得;②根據(jù)平均數(shù)和眾數(shù)的定義求解可得;(2)用總戶數(shù)乘以樣本中采用了網(wǎng)上預(yù)約義務(wù)植樹這種方式的戶數(shù)所占比例可得.【詳解】解:(1)①由已知數(shù)據(jù)知3棵的有12人、4棵的有8人,補全圖形如下:②這30戶家庭2018年4月份義務(wù)植樹數(shù)量的平均數(shù)是(棵),眾數(shù)為3棵,故答案為:3.4棵、3棵;(2)估計該小區(qū)采用這種形式的家庭有戶,故答案為:1.【點睛】此題考查條形統(tǒng)計圖,加權(quán)平均數(shù),眾數(shù),解題關(guān)鍵在于利用樣本估計總體.22、(1)y=-12x+2,y=-6x【解析】試題分析:(1)根據(jù)已知條件求出A、B、C點坐標,用待定系數(shù)法求出直線AB和反比例函數(shù)的解析式;(2)聯(lián)立一次函數(shù)的解析式和反比例的函數(shù)解析式可得交點D的坐標,從而根據(jù)三角形面積公式求解;(3)根據(jù)函數(shù)的圖象和交點坐標即可求解.試題解析:解:(1)∵OB=4,OE=2,∴BE=2+4=1.∵CE⊥x軸于點E,tan∠ABO=OAOB=CEBE=12,∴OA=2,CE=3,∴點A的坐標為(0,2)、點B∵一次函數(shù)y=ax+b的圖象與x,y軸交于B,A兩點,∴4a+b=0b=2,解得:a=-故直線AB的解析式為y=-1∵反比例函數(shù)y=kx的圖象過C,∴3=k-2,∴k(2)聯(lián)立反比例函數(shù)的解析式和直線AB的解析式可得:y=-12x+2y=-6x,可得交點D的坐標為(1,﹣1),則△(3)由圖象得,一次函數(shù)的值大于反比例函數(shù)的值時x的取值范圍:x<﹣2或0<x<1.點睛:本題考查了反比例函數(shù)與一次函數(shù)的交點問題:求反比例函數(shù)與一次函數(shù)的交點坐標,把兩個函數(shù)關(guān)系式聯(lián)立成方程組求解,若方程組有解則兩者有交點,方程組無解,則兩者無交點.23、(1)本次試點投放的A型車60輛、B型車40輛;(2)3輛;2輛【解析】分析:(1)設(shè)本次試點投放的A型車x輛、B型車y輛,根據(jù)“兩種款型的單車共100輛,總價值36800元”列方程組求解可得;(2)由(1)知A、B型車輛的數(shù)量比為3:2,據(jù)此設(shè)整個城區(qū)全面鋪開時投放的A型車3a輛、B型車2a輛,根據(jù)“投資總價值不低于184萬元”列出關(guān)于a的不等式,解之求得a的范圍,進一步求解可得.詳解:(1)設(shè)本次試點投放的A型車x輛、B型車y輛,根據(jù)題意,得:,解得:,答:本次試點投放的A型車60輛、B型車40輛;(2)由(1)知A、B型車輛的數(shù)量比為3:2,設(shè)整個城區(qū)全面鋪開時投放的A型車3a輛、B型車2a輛,根據(jù)題意,得:3a×400+2a×320≥1840000,解得:a≥1000,即整個城區(qū)全面鋪開時投放的A型車至少3000輛、B型車至少2000輛,則城區(qū)10萬人口平均每100人至少享有A型車3000×=3輛、至少享有B型車2000×=2輛.點睛:本題主要考查二元一次方程組和一元一次不等式的應(yīng)用,解題的關(guān)鍵是理解題意找到題目蘊含的相等(或不等)關(guān)系,并據(jù)此列出方程組.24、37【解析】試題分析:過點作交于點.構(gòu)造直角三角形,在中,計算出,在中,計算出.試題解析:如圖所示:過點作交于點.
在中,
又∵在中,
答:的長度為25、(1)見解析;(2).【解析】
(1)連接OC,根據(jù)等腰三角形的性質(zhì)得到∠OCB=∠B,∠OCB=∠F,根據(jù)垂徑定理得到OF⊥BC,根據(jù)余角的性質(zhì)得到∠OCF=90°,于是得到結(jié)論;
(2)過D作DH⊥AB于H,根據(jù)三角形的中位線的想知道的OD=AC,根據(jù)平行四邊形的性質(zhì)得到DF=AC,設(shè)OD=x,得到AC=DF=2x,根據(jù)射影定理得到CD=x,求得BD=x,根據(jù)勾股定理得到AD=x,于是得到結(jié)論.【詳解】解:(1)連接OC,
∵OC=OB,
∴∠OCB=∠B,
∵∠B=∠F,
∴∠OCB=∠F,
∵D為BC的中點,
∴OF⊥BC,
∴∠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新解讀《CB-T 3895-1999船用柴油機清潔度測量方法》新解讀
- 新解讀《CB-T 3850 - 1999船用分流式離心潤滑油濾器》新解讀
- 第18課 科技文化成就 課件 人教版部編八年級下冊歷史
- 汽車傳感器與檢測技術(shù)電子教案:組合式加速度傳感器
- Brand KPIs for neobanking N26 in the United States-英文培訓(xùn)課件2025.4
- 汽車傳感器與檢測技術(shù)電子教案:開關(guān)式節(jié)氣門位置傳感器
- 單位管理量化管理制度
- 地面危險作業(yè)管理制度
- 介紹校園活動方案
- 倉庫包裝比賽活動方案
- 金融企業(yè)呆賬核銷管理辦法
- 2025年吉林省國資委出資企業(yè)招聘筆試參考題庫含答案解析
- 中國食物成分表標準版第6版
- 自身免疫性腦炎課件
- 廣東省廣州市廣大附中教育集團2022-2023學(xué)年九年級上學(xué)期自主招生數(shù)學(xué)試題
- 精神??浦R應(yīng)知應(yīng)會試題題庫及答案
- 國開電大《組織行為學(xué)》形考任務(wù)1-4
- 2024-2030年中國半導(dǎo)體設(shè)備租賃行業(yè)發(fā)展?fàn)顩r及投資策略建議報告
- 外科學(xué)(2)知到智慧樹章節(jié)測試課后答案2024年秋溫州醫(yī)科大學(xué)
- 國家開放大學(xué)《統(tǒng)計與數(shù)據(jù)分析基礎(chǔ)》形考任務(wù)1-5答案
- 高速公路溝通技巧培訓(xùn)
評論
0/150
提交評論