




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆太原師院附中高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)是函數(shù)的導(dǎo)函數(shù),的圖象如圖所示,則的解集是()A. B.C. D.2.已知數(shù)列的通項公式為,則()A.12 B.14C.16 D.183.已知點是橢圓上一點,點,則的最小值為A. B.C. D.4.雙曲線的漸近線的斜率是()A.1 B.C. D.5.已知為虛數(shù)單位,復(fù)數(shù)滿足為純虛數(shù),則的虛部為()A. B.C. D.6.已知數(shù)列為等比數(shù)列,,則的值為()A. B.C. D.27.某制藥廠為了檢驗?zāi)撤N疫苗預(yù)防的作用,把名使用疫苗的人與另外名未使用疫苗的人一年中的記錄作比較,提出假設(shè):“這種疫苗不能起到預(yù)防的作用”,利用列聯(lián)表計算得,經(jīng)查對臨界值表知.則下列結(jié)論中,正確的結(jié)論是()A.若某人未使用該疫苗,則他在一年中有的可能性生病B.這種疫苗預(yù)防的有效率為C.在犯錯誤的概率不超過的前提下認(rèn)為“這種疫苗能起到預(yù)防的作用”D.有的把握認(rèn)為這種疫苗不能起到預(yù)防生病的作用8.已知數(shù)列中,,則()A.2 B.C. D.9.在平面直角坐標(biāo)系中,雙曲線的右焦點為,過雙曲線上一點作軸的垂線足為,若,則該雙曲線的離心率為()A. B.C. D.10.對任意實數(shù)k,直線與圓的位置關(guān)系是()A.相交 B.相切C.相離 D.與k有關(guān)11.以軸為對稱軸,拋物線通徑的長為8,頂點在坐標(biāo)原點的拋物線的方程是()A. B.C.或 D.或12.雙曲線的左焦點到其漸近線的距離是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點是拋物線上的兩點,,點是拋物線的焦點,若,則的值為__________14.設(shè)f(x)=xlnx,若f′(x0)=2,則x0=________15.從1,2,3,4,5中任取兩個不同的數(shù),其中一個作為對數(shù)的底數(shù)a,另一個作為對數(shù)的真數(shù)b.則的概率為______.16.已知O為坐標(biāo)原點,,是拋物線上的兩點,且滿足,則______;若OM垂直AB于點M,且為定值,則點Q的坐標(biāo)為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)隨著生活條件的改善,人們健身意識的增強,健身器械比較暢銷,某商家為了解某種健身器械如何定價可以獲得最大利潤,現(xiàn)對這種健身器械進(jìn)行試銷售.統(tǒng)計后得到其單價x(單位:百元)與銷量y(單位:個)的相關(guān)數(shù)據(jù)如下表:單價x(百元/個)3035404550日銷售量y(個)1401301109080(1)已知銷量y與單價x具有線性相關(guān)關(guān)系,求y關(guān)于x的線性回歸方程;(2)若每個健身器械的成本為25百元,試銷售結(jié)束后,請利用(1)中所求的線性回歸方程確定單價為多少百元時,銷售利潤最大?(結(jié)果保留到整數(shù)),附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為.參考數(shù)據(jù):.18.(12分)已知命題:對任意實數(shù)都有恒成立;命題:關(guān)于的方程有實數(shù)根(1)若命題為假命題,求實數(shù)的取值范圍;(2)如果“”為真命題,且“”為假命題,求實數(shù)的取值范圍19.(12分)如圖,在直角梯形中,.直角梯形通過直角梯形以直線為軸旋轉(zhuǎn)得到,且使得平面平面.M為線段的中點,P為線段上的動點(1)求證:;(2)當(dāng)點P滿足時,求證:直線平面;(3)是否存在點P,使直線與平面所成角的正弦值為?若存在,試確定P點的位置;若不存在,請說明理由20.(12分)如圖,在空間直角坐標(biāo)系中有長方體,且,,點E在棱AB上移動.(1)證明:;(2)當(dāng)E為AB的中點時,求直線AC與平面所成角的正弦值.21.(12分)設(shè)等差數(shù)列的前項和為,已知.(1)求數(shù)列的通項公式;(2)當(dāng)為何值時,最大,并求的最大值.22.(10分)已知的頂點,邊上的中線所在直線方程為,邊上的高所在直線方程為.求:(1)頂點的坐標(biāo);(2)直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】先由圖像分析出的正負(fù),直接解不等式即可得到答案.【詳解】由函數(shù)的圖象可知,在區(qū)間上單調(diào)遞減,在區(qū)間(0,2)上單調(diào)遞增,即當(dāng)時,;當(dāng)x∈(0,2)時,.因為可化為或,解得:0<x<2或x<0,所以不等式的解集為.故選:C2、D【解析】利用給定的通項公式直接計算即得.【詳解】因數(shù)列的通項公式為,則有,所以.故選:D3、D【解析】設(shè),則,.所以當(dāng)時,的最小值為.故選D.4、B【解析】由雙曲線的漸近線方程為:,化簡即可得到答案.【詳解】雙曲線的漸近線方程為:,即,漸近線的斜率是.故選:B5、D【解析】先設(shè),代入化簡,由純虛數(shù)定義求出,即可求解.【詳解】設(shè),所以,因為為純虛數(shù),所以,解得,所以的虛部為:.故選:D.6、B【解析】根據(jù)等比數(shù)列的性質(zhì)計算.【詳解】由等比數(shù)列的性質(zhì)可知,且等比數(shù)列奇數(shù)項的符號相同,所以,即.故選:B7、C【解析】根據(jù)的值與臨界值的大小關(guān)系進(jìn)行判斷.【詳解】∵,,∴在犯錯誤的概率不超過的前提下認(rèn)為“這種疫苗能起到預(yù)防的作用”,C對,由已知數(shù)據(jù)不能確定若某人未使用該疫苗,則他在一年中有的可能性生病,A錯,由已知數(shù)據(jù)不能判斷這種疫苗預(yù)防的有效率為,B錯,由已知數(shù)據(jù)沒有的把握認(rèn)為這種疫苗不能起到預(yù)防生病的作用,D錯,故選:C.8、A【解析】根據(jù)數(shù)列的周期性即可求解.【詳解】由得,顯然該數(shù)列中的數(shù)從開始循環(huán),數(shù)列的周期是,所以.故選:A.9、A【解析】根據(jù)條件可知四邊形為正方形,從而根據(jù)邊長相等,列式求雙曲線的離心率.【詳解】不妨設(shè)在第一象限,則,根據(jù)題意,四邊形為正方形,于是,即,化簡得,解得(負(fù)值舍去).故選:A.10、A【解析】判斷直線恒過定點,可知定點在圓內(nèi),即可判斷直線與圓的位置關(guān)系.【詳解】由可知,即該圓的圓心坐標(biāo)為,半徑為,由可知,則該直線恒過定點,將點代入圓的方程可得,則點在圓內(nèi),則直線與圓的位置關(guān)系為相交.故選:.11、C【解析】由分焦點在軸的正半軸上和焦點在軸的負(fù)半軸上,兩種情況討論設(shè)出方程,根據(jù),即可求解.【詳解】由題意,拋物線的頂點在原點,以軸為對稱軸,且通經(jīng)長為8,當(dāng)拋物線的焦點在軸的正半軸上時,設(shè)拋物線的方程為,可得,解得,所以拋物線方程為;當(dāng)拋物線的焦點在軸的負(fù)半軸上時,設(shè)拋物線的方程為,可得,解得,所以拋物線方程為,所以所求拋物線的方程為.故選:C.12、A【解析】求出雙曲線焦點坐標(biāo)與漸近線方程,利用點到直線的距離公式可求得結(jié)果.【詳解】在雙曲線中,,,,所以,該雙曲線的左焦點坐標(biāo)為,漸近線方程為,即,因,該雙曲線的左焦點到漸近線的距離為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、10【解析】由拋物線的定義根據(jù)題意可知求得p,代入拋物線方程,分別求得y1,y2的值,即可求得y12+y2的值【詳解】由拋物線的定義可得,依據(jù)題設(shè)可得,則(舍去負(fù)值),故,故填.【點睛】本題考查拋物線的定義和性質(zhì),利用已知相等關(guān)系求解拋物線方程,然后求解已知點的縱坐標(biāo),解題中需要熟練拋物的定義和性質(zhì),靈活應(yīng)用.14、【解析】f(x)=xlnx∴f'(x)=lnx+1則f′(x0)=lnx0+1=2解得:x0=e15、##【解析】利用列舉法,結(jié)合古典概型概率計算公式以及對數(shù)的知識求得正確答案.【詳解】的所有可能取值為,,共種,滿足的為,,共種,所以的概率為.故答案為:16、①.-24②.【解析】由拋物線的方程及數(shù)量積的運算可求出,設(shè)直線AB的方程為,聯(lián)立拋物線方程,由根與系數(shù)的關(guān)系可求出,由圓的定義求出圓心即可.【詳解】由,即解得或(舍去).設(shè)直線AB的方程為.由,消去x并整理得,.又,,直線AB恒過定點N(6,0),OM垂直AB于點M,點M在以O(shè)N為直徑圓上.|MQ|為定值,點Q為該圓的圓心,又即Q(3,0).故答案為:;三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)確定單價為50百元時,銷售利潤最大.【解析】(1)根據(jù)參考公式和數(shù)據(jù)求出,進(jìn)而求出線性回歸方程;(2)設(shè)出定價,結(jié)合(1)求出利潤,進(jìn)而通過二次函數(shù)的性質(zhì)求得答案.【小問1詳解】由題意,,則,,結(jié)合參考數(shù)據(jù)可得,,所以線性回歸方程為.【小問2詳解】設(shè)定價為x百元,利潤為,則,由題意,則(百元)時,最大.故確定單價為50百元時,銷售利潤最大.18、(1);(2)【解析】(1)先分別求出命題為真命題和命題為真命題時參數(shù)的范圍,則可得當(dāng)命題為假命題,實數(shù)的取值范圍(2)由“”為真命題,且“”為假命題,則命題,一真一假,再分真,且假,和真,且假兩種情況分別求出參數(shù)的范圍,再綜合得到答案.【詳解】命題為真命題:對任意實數(shù)都有恒成立或;命題為真命題:關(guān)于的方程有實數(shù)根;(1)命題為假命題,則實數(shù)取值范圍(2)由“”為真命題,且“”為假命題,則命題,一真一假.如果真,且假,有,且,則如果真,且假,有或,且,則綜上,實數(shù)的取值范圍為19、(1)見解析(2)見解析(3)存在點P,【解析】(1)建立空間坐標(biāo)系求兩直線的方向向量,根據(jù)數(shù)量積為0可證的結(jié)論;(2)求得直線的方向向量和面的法向量,證得兩向量垂直即可;(3)求直線的方向向量和面的法向量的夾角即可.【小問1詳解】由已知可得,,,兩兩垂直,以A為原點,,,所在直線為軸,軸,軸建立如圖空間直角坐標(biāo)系,因為,所以,,,,,,,,,∴,,∴,,即,,∴平面又∵平面,∴【小問2詳解】設(shè)點坐標(biāo)為,則,∵,∴,,,解得:,,,即設(shè)平面的一個法向量,∵,,∴,即,令,則,,得又,∴∴直線平面【小問3詳解】設(shè),則,設(shè)的一個法向量為∵,,∴,解,令,則,,得設(shè)與平面所成角為,則.解得:或(舍).故存在點P,,即點P為距的第一個5等分點20、(1)證明見解析(2)【解析】(1)設(shè),求出,,利用向量法能求出;(2)求出平面的法向量,利用向量法能求出直線與平面所成角的正弦值【小問1詳解】證明:設(shè),,,,;【小問2詳解】當(dāng)為的中點時,,,設(shè)平面的法向量,則,取,得,設(shè)直線與平面所成角為,則直線與平面所成角的正弦值為:21、(1)(2)n為6或7;126【解析】(1)設(shè)等差數(shù)列的公差為d,利用等差數(shù)列的通項公式求解;(2)由,利用二次函數(shù)的性質(zhì)求解.【小問1詳解】解:設(shè)等差數(shù)列的公差為d,因為.所以,解得,所以;【小問2詳解】,當(dāng)或7
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 刀刺傷護(hù)理措施及診斷
- 綜合體二次裝修驗收培訓(xùn)
- 培訓(xùn)完成情況
- 教師招聘面試說課培訓(xùn)
- 成都市區(qū)限購政策下二手房交易安全保障合同
- 高新技術(shù)企業(yè)部分股權(quán)出讓及知識產(chǎn)權(quán)歸屬協(xié)議
- 餐飲店合伙人共同經(jīng)營風(fēng)險防范合同
- 海外務(wù)工人員派遣及就業(yè)指導(dǎo)合同
- 公共停車設(shè)施經(jīng)營權(quán)租賃合同
- 柴油行業(yè)居間代理合同樣本
- GB/T 22751-2008臺球桌
- GA 1205-2014滅火毯
- “十個堅持”的邏輯體系與深刻內(nèi)涵
- 攜手耕耘未來課件
- 社區(qū)工作者經(jīng)典備考題庫(必背300題)
- 2023年陜西韓城象山中學(xué)高一物理第二學(xué)期期末聯(lián)考試題(含答案解析)
- DB4401-T 102.1-2020 建設(shè)用地土壤污染防治+第1部分:污染狀況調(diào)查技術(shù)規(guī)范-(高清現(xiàn)行)
- 農(nóng)業(yè)產(chǎn)業(yè)園可行性研究報告
- 實驗2:基本數(shù)據(jù)類型、運算符與表達(dá)式
- 常州建筑水電安裝施工專項方案
- 增強教師職業(yè)認(rèn)同感、榮譽感、幸福感-課件
評論
0/150
提交評論