




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江蘇省揚州市紅橋高級中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若,則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點在()A.曲線上 B.曲線上C.直線上 D.直線上2.已知、,則直線的傾斜角為()A. B.C. D.3.下列說法正確的個數(shù)有()個①在中,若,則②是,,成等比數(shù)列的充要條件③直線是雙曲線的一條漸近線④函數(shù)的導(dǎo)函數(shù)是,若,則是函數(shù)的極值點A.0 B.1C.2 D.34.若動點滿足方程,則動點P的軌跡方程為()A. B.C. D.5.即空氣質(zhì)量指數(shù),越小,表明空氣質(zhì)量越好,當(dāng)不大于100時稱空氣質(zhì)量為“優(yōu)良”.如圖是某市3月1日到12日的統(tǒng)計數(shù)據(jù).則下列敘述正確的是A.這天的的中位數(shù)是B.天中超過天空氣質(zhì)量為“優(yōu)良”C.從3月4日到9日,空氣質(zhì)量越來越好D.這天的的平均值為6.等差數(shù)列的前項和,若,則A.8 B.10C.12 D.147.若橢圓的短軸為,一個焦點為,且為等邊三角形的橢圓的離心率是A. B.C. D.8.設(shè)太陽光線垂直于平面,在陽光下任意轉(zhuǎn)動棱長為一個單位的立方體,則它在平面上的投影面積的最大值是()A.1 B.C. D.9.圓心,半徑為的圓的方程是()A. B.C. D.10.已知直線與直線垂直,則()A. B.C. D.311.已知向量,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件12.已知條件,條件表示焦點在x軸上的橢圓,則p是q的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既非充分也非必要條件二、填空題:本題共4小題,每小題5分,共20分。13.若滿足約束條件,則的最大值為_________.14.已知,若三個數(shù)成等差數(shù)列,則_________;若三個數(shù)成等比數(shù)列,則__________15.曲線圍成的圖形的面積是__________16.已知過點作拋物線的兩條切線,切點分別為A,B,直線AB經(jīng)過拋物線C的焦點F,則___________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)圓錐曲線的方程是.(1)若表示焦點在軸上的橢圓,求的取值范圍;(2)若表示焦點在軸上且焦距為的雙曲線,求的值.18.(12分)已知空間中三點,,,設(shè),(1)求向量與向量的夾角的余弦值;(2)若與互相垂直,求實數(shù)的值19.(12分)已知,,分別是銳角內(nèi)角,,的對邊,,.(1)求的值;(2)若的面積為,求的值.20.(12分)已知是公差不為零的等差數(shù)列,,且,,成等比數(shù)列(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和21.(12分)在△ABC中,角A,B,C所對的邊為a,b,c,其中,,且(1)求角B的值;(2)若,判斷△ABC的形狀22.(10分)兩人下棋,每局均無和棋且獲勝的概率為,某一天這兩個人要進(jìn)行一場五局三勝的比賽,勝者贏得2700元獎金,(1)分別求以獲勝、以獲勝的概率;(2)若前兩局雙方戰(zhàn)成,后因為其他要事而終止比賽,間,怎么分獎金才公平?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)復(fù)數(shù)的除法運算,先化簡,進(jìn)而求出,再由復(fù)數(shù)的幾何意義,即可得出結(jié)果.【詳解】因為,所以,因此復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點為,可知其在曲線上.故選:B2、B【解析】設(shè)直線的傾斜角為,利用直線的斜率公式求出直線的斜率,進(jìn)而可得出直線的傾斜角.【詳解】設(shè)直線的傾斜角為,由斜率公式可得,,因此,.故選:B.3、B【解析】根據(jù)三角函數(shù)、等比數(shù)列、雙曲線和導(dǎo)數(shù)知識逐項分析即可求解.【詳解】①在中,則有,因,所以,又余弦函數(shù)在上單調(diào)遞減,所以,故①正確,②當(dāng)且時,此時,但是,,不成等比數(shù)列,故②錯誤,③由雙曲線可得雙曲線的漸近線為,故③錯誤,④“”是“是函數(shù)的極值點”的必要不充分條件,故④錯誤.故選:B.4、A【解析】根據(jù)方程可以利用幾何意義得到動點P的軌跡方程是以與為焦點的橢圓方程,從而求出軌跡方程.【詳解】由題意得:到與的距離之和為8,且8>4,故動點P的軌跡方程是以與為焦點的橢圓方程,故,,所以,,所以橢圓方程為.故選:A5、C【解析】這12天的AQI指數(shù)值的中位數(shù)是,故A不正確;這12天中,空氣質(zhì)量為“優(yōu)良”的有95,85,77,67,72,92共6天,故B不正確;;從4日到9日,空氣質(zhì)量越來越好,,故C正確;這12天的指數(shù)值的平均值為110,故D不正確.故選C6、C【解析】假設(shè)公差為,依題意可得.所以.故選C.考點:等差數(shù)列的性質(zhì).7、B【解析】因為為等邊三角形,所以.考點:橢圓的幾何性質(zhì).點評:橢圓圖形當(dāng)中有一個特征三角形,它的三邊分別為a,b,c.因而可據(jù)此求出離心率.8、C【解析】確定正方體投影面積最大時,是投影面與平面AB'C平行,從而求出投影面積的最大值.【詳解】設(shè)正方體投影最大時,是投影面與平面AB'C平行,三個面的投影為兩個全等的菱形,其對角線為,即投影面上三條對角線構(gòu)成邊長為的等邊三角形,如圖所示,所以投影面積為故選:C9、D【解析】根據(jù)圓心坐標(biāo)及半徑,即可得到圓的方程.【詳解】因為圓心為,半徑為,所以圓的方程為:.故選:D.10、D【解析】先分別求出兩條直線的斜率,再利用兩直線垂直斜率之積為,即可求出.【詳解】由已知得直線與直線的斜率分別為、,∵直線與直線垂直,∴,解得,故選:.11、A【解析】根據(jù)平面向量垂直的性質(zhì),結(jié)合平面向量數(shù)量積的坐標(biāo)表示公式、充分性、必要性的定義進(jìn)行求解判斷即可.詳解】當(dāng)時,有,顯然由,但是由不一定能推出,故選:A12、A【解析】根據(jù)條件,求得a的范圍,根據(jù)充分、必要條件的定義,即可得答案.【詳解】因為條件表示焦點在x軸上的橢圓,所以,解得或,所以條件是條件q:或的充分不必要條件.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、7【解析】畫出約束條件所表示的平面區(qū)域,結(jié)合圖象和直線在軸上的截距,確定目標(biāo)函數(shù)的最優(yōu)解,代入即可求解.【詳解】畫出不等式組所表示的平面區(qū)域,如圖所示,目標(biāo)函數(shù)可化為,當(dāng)直線過點點時,此時直線在軸上的截距最大,此時目標(biāo)函數(shù)取得最大值,又由,解得,即,所以目標(biāo)函數(shù)的最大值為.故答案為:.14、①.4②.【解析】由等差中項與等比中項計算即可.【詳解】若a,b,c三個數(shù)成等差數(shù)列.所以.若a,b,c三個數(shù)成等比數(shù)列.所以故答案為:4,.15、【解析】當(dāng),時,已知方程是,即.它對應(yīng)的曲線是第一象限內(nèi)半圓弧(包括端點),它的圓心為,半徑為.同理,當(dāng),;,;,時對應(yīng)的曲線都是半圓?。ㄈ鐖D).它所圍成的面積是.故答案為16、【解析】設(shè)出點的坐標(biāo),與拋物線方程聯(lián)立,結(jié)合題意和韋達(dá)定理,求得拋物線的方程為,直線AB的方程為,進(jìn)而求得的值.【詳解】設(shè),在拋物線,過切點A與拋物線相切的直線的斜率為,則以為切點的切線方程為,聯(lián)立方程組,整理得,則,整理得,所以,解得,所以以為切點的切線方程為,即,同理,設(shè),在拋物線,過切點B與拋物線相切的直線,又因為在切線和,所以,所以直線AB的方程為,又直線AB過拋物線的焦點,所以令,可得,即,所以拋物線的方程為,直線AB的方程為,聯(lián)立方程組,整理得或,所以,所以.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)且(2)【解析】(1)由條件可得,解出即可;(2)由條件可得,解出即可.【小問1詳解】若表示焦點在軸上橢圓,則,解得且【小問2詳解】若表示焦點在軸上且焦距為的雙曲線,則,解得18、(1);(2)或.【解析】(1)坐標(biāo)表示出、,利用向量夾角的坐標(biāo)表示求夾角余弦值;(2)坐標(biāo)表示出k+、k-2,利用向量垂直的坐標(biāo)表示列方程求的值.【詳解】由題設(shè),=(1,1,0),=(-1,0,2)(1)cosθ=,所以和的夾角余弦值為.(2)k+=k(1,1,0)+(-1,0,2)=(k-1,k,2),k-2=(k+2,k,-4),又(k+)⊥(k-2),則(k-1,k,2)·(k+2,k,-4)=(k-1)(k+2)+k2-8=2k2+k-10=0,解得k=-或2.19、(1);(2)4.【解析】(1)由正弦定理即可得答案.(2)根據(jù)題意得到,再由關(guān)于角的余弦定理和整理化簡得,再由的面積,即可求出的值.【小問1詳解】由及正弦定理可得.【小問2詳解】由銳角中得,根據(jù)余弦定理可得,代入得,整理得,即,解得,,解得.20、(1);(2)【解析】(1)由等差數(shù)列以及等比中項的公式代入聯(lián)立求解出,再利用等差數(shù)列的通項公式即可求得答案;(2)利用分組求和法,根據(jù)求和公式分別求出等差數(shù)列與等比數(shù)列的前項和再相加即可.【詳解】(1)由題意,,,即,聯(lián)立解得,所以數(shù)列的通項公式為;(2)由(1)得,,所以【點睛】關(guān)于數(shù)列前項和的求和方法:分組求和法:兩個數(shù)列等差或者等比數(shù)列相加時利用分組求和法計算;裂項相加法:數(shù)列的通項公式為分式時可考慮裂項相消法求和;錯位相減法:等差乘以等比數(shù)列的情況利用錯位相減法求和.21、(1)(2)等邊三角形【解析】(1)把化為,然后由正弦定理化邊為角,利用兩角和的正弦公式、誘導(dǎo)公式可求得;(2)由余弦定理及三角形面積公式可得,從而得出三角形為等邊三角形【小問1詳解】∵,∴由正弦定理得,∵,∴,∴,又,所以,可得;【小問2詳解】由(1)知余弦定理,①,②由①②可得:,又,所以,所以該三角形為等邊三角形22、(1)以獲勝、以獲勝的概率分別是;(2)分給分別元,元.【解析】(1)以獲勝、以獲勝,則分別要連勝三局,前三局勝兩局輸
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 退訂協(xié)議書范本
- 公司股東合同協(xié)議
- 舊房折建協(xié)議書
- 進(jìn)口車銷售合同協(xié)議
- 連鎖披薩店轉(zhuǎn)讓合同協(xié)議
- 委托代理買房合同書
- 進(jìn)出口牛肉銷售合同協(xié)議
- 《輿論學(xué)》本科筆記
- 轉(zhuǎn)讓合同解除協(xié)議書范本
- 個體員工合同協(xié)議書
- 2025-2030中國共軛亞油酸(CLA)行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- 中央2025年中國知識產(chǎn)權(quán)研究會招聘筆試歷年參考題庫附帶答案詳解
- 10《奪取抗日戰(zhàn)爭和人民解放戰(zhàn)爭的勝利》第一課時《勿忘國恥》教學(xué)設(shè)計-2023-2024學(xué)年道德與法治五年級下冊統(tǒng)編版
- 江蘇省新高考基地學(xué)校2024-2025學(xué)年高三下學(xué)期第二次大聯(lián)考化學(xué)試卷(含答案)
- 2024年懷化市鶴城區(qū)社區(qū)專職工作人員招聘筆試真題
- 《養(yǎng)牛與牛病防控技術(shù)》課件-項目九 疾病防控體系
- 三重一大培訓(xùn)課件
- 試崗期協(xié)議書模板
- 安裝防雷設(shè)施合同協(xié)議
- 廣東省2024-2025學(xué)年佛山市普通高中教學(xué)質(zhì)量檢測生物試卷(二)高三試卷(佛山二模)
- 商業(yè)銀行資產(chǎn)配置與風(fēng)險管理
評論
0/150
提交評論