




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
H62SPCChapter3:LaplaceTransform2016-2017BlockDiagramReductionTechniquesIBlocksinCascadeKeyPoint:Thekeythingforallblockdiagrammanipulationandreductionisthatthefunctionforthesystemoutput(orthetotalsystemtransferfunction)shouldneverchangeasaresultofblockdiagrammanipulationG1xy
G2u
yG1G2xBlockDiagramReductionTechniquesIIMovingatakeoffpointaheadofablockMovingatakeoffpointbehindablockYXZGYXZGGy=Gxz=Gxy=Gxz=GxYXZGYXG
Zy=Gxz=xy=Gx
BlockDiagramReductionTechniquesIIIMovingsummingjunctionszxy++
Gzxy++
GG
zxy++
Gzx++G
y
BlockDiagramReductionTechniquesIVReductionoffeed-forwardpaths(BlocksinParallel)YXG++Hxy
BlockDiagramReductionTechniquesVReductionoffeedbackloopsYXG++HxyeHy
BlockDiagramReductionTechniquesVIReductionoffeedbackloopsYXG+-HxyeHy
Thisoneisverycommonlyusedinclosedloopcontrolsystemanalysis!BlockDiagramReductionTechniquesVIISystemswithMultipleInputsThereisoftenmorethanoneinputintoasystem…G1xzG2u++yXandYarebothinputsintothesystem,zistheoutput
Note-thiscouldalsobesolvedusingthesuperpositiontheorem--Assumey=0,calculateZ-Assumex=0,calculateZ-FullzisthesumofthesetworesultsFirstOrderSystemsIfanelementofenergystorageisassociatedwithanelementofenergydissipationthenthenatureoftheoutputisgivenby:
x=inputvariabley=outputvariableT=Timeconstantk=gainExample:vvRvLiRL
Comparetostandardform:
ResponseofafirstOrderSystem:UnitStepWeusea“StepInput”totesttheresponseofasystemtoinstantaneouschangesininput:x(t)=u(t):Itispossibletomathematicallyprovethatthesolutiontothedifferentialequationis:y0k
tTransientStateandSteadyState5TTransientStateSteadyStateResponseofafirstOrderSystem:UnitCosinevRvLiR
TheDOperator
DisamathematicaloperatorwhichrepresentstheprocessofdifferentiationwithrespecttotimeExample:
KeyPointsBlockDiagramReductionDeterminingsystemresponseWehavealreadydeducedthattheresponseofsystemstostimuliisusuallydeterminedbyadifferentialequationThismeansthatforagiveninput(astepinputforexample),inordertodeterminehowsystemresponds,wemustsolvethedifferentialequation.Thiscanbecarriedoutusingtheusualtechniques,butthereisabetterway,whichlendsitselfverywelltocontroldesignasitgivesusatransferfunction.ThemethodusesLAPLACETRANSFORMSDifferentialEquationInputConvertusingtheLaplaceTransformSolvesysteminLaplacedomainConvertbackintothetimedomainSolutionPierre-SimonLaplace:TheFrenchNewtonDevelopedmathematicsinastronomy,physics,andstatisticsBeganworkincalculuswhichledtotheLaplaceTransformFocusedlateroncelestialmechanicsOneofthefirstscientiststosuggesttheexistenceofblackholesLaplaceTransform:IdeasTheLaplaceTransformconvertsintegralanddifferentialequationsintoalgebraicequationsThisislikephasors,but:Appliestogeneralsignals,notjustsinusoidsHandlesno-steady-stateconditionsAllowsustoanalyzeComplicatedcircuitswithsources,Ls,Rs,andCsComplicatedsystemswithintegrators,differentiators,gainsHistoryoftheTransform
Eulerbeganlookingatintegralsassolutionstodifferentialequationsinthemid1700’s:Lagrangetookthisastepfurtherwhileworkingonprobabilitydensityfunctionsandlookedatformsofthefollowingequation:Finally,in1785,LaplacebeganusingatransformationtosolveequationsoffinitedifferenceswhicheventuallyleadtothecurrenttransformTheLaplaceTransform
Notes:sisusuallycomplex(notreal)sisaconstantforthepurposeofintegrationTransformationisonlyvalidfort0NotationforLaplaceTransformsTimeDomains-Domain
transformsLowercaseUppercaseWewillbeinterestedinthesignaldefinedfort>=0TheLaplaceTransformofasignal(function)f(t)isthefunctiondefinedby:s
RestrictionsTherearetwogoverningfactorsthatdeterminewhetherLaplacetransformscanbeused:f(t)mustbeatleastpiecewisecontinuousfort≥0|f(t)|≤MeγtwhereMandγareconstantsSincethegeneralformoftheLaplacetransformis:itmakessensethatf(t)mustbeatleastpiecewisecontinuousfort≥0.Iff(t)wereverynasty,theintegralwouldnotbecomputable.ContinuityBoundednessThiscriterionalsofollowsdirectlyfromthegeneraldefinition:Iff(t)isnotboundedbyMeγtthentheintegralwillnotconverge.LaplaceTransformTheoryGeneralTheoryExampleConvergenceLaplaceTransformsSomeLaplaceTransformsWidevarietyoffunctioncanbetransformedInverseTransformOftenrequirespartialfractionsorothermanipulationtofindaformthatiseasytoapplytheinverseLaplaceTransformsofCommonFunctions:UnitRampfunction
1f(t)tLaplaceTransformsofCommonFunctions:Sinusoid
f(t)t1f(t)tExponentialDecayfunction
f(t)t
Sinusoidalfunction
LaplaceTransformsofCommonFunctionsIIf(t)tDampedSinusoidfunction
LaplaceTransformsofCommonFunctionsIIIf(t)tTheunitimpulse(deltadirac)function
Unitarea
....Workingforthisistedious…
Properties:LinearityTheLaplaceTransformislinear:iffandgareanysignals,andaisanyscalar,wehave:i.e.homogeneity&superpositionhold.Example:Properties:One-to-one
What“almost”means?Iffandgdifferonlyatafinitenumberofpoints(wheretherearen’timpulses),thenF=GTimeScalingdefinesignalgbyg(t)=f(at),wherea>0;then G(s)=(1/a)F(s/a)makessense:timesarescaledbya,frequenciesby1/a.Let’scheck:Whereτ=atExponentialScaling
TimeDelay
Example:Timedelay
DerivativesintheLaplaceDomainI
sF(s)
Wheref(0)istheinitialcondition(i.e.it’svalueatt=0)ofthefunction.Ifthereisn’tonethenf(0)=0Example:Derivation
DerivativesintheLaplaceDomainII
Similarexpressionscanbederivedforhigherorderdifferentials
......Iftherearenoinitialconditionsthenthesee????(??),??2????and??3????respectivelyExample:RLCircuitTransferfunctionvvRvLiRL
Withnoinitialconditions:
iI(s)di/dtsI(s)vV(s)Assumingthevoltage,V(s),istheinput,andthecurrentwe’reconsidering,I(s)istheoutput,wecanconvertthisintoatransferfunction:
Example:RLCCircuitTransferfunction
vvRvLivC
Thistime,let’sassumethatthecapacitorvoltageistheoutputthatwewanttoderiveatransferfunctionforWithzeroinitialconditions:vc
VC(s)dvc/dtsVC(s)vV(s)
Rearrangingasatransferfunction:
IntegralintheLaplaceDomainIILetgbetherunningintegralofasignalf,i.e.,????=0??????????Then????=1????(??)i.e.,time-domainintegralesdivisionbyfrequencyvariablesExample:????=??(??),so????=1;gisaunitstepfunction????=1??fisaunitstepfunction,then????=1??;gisaunitrampfunction(g(t)=tfort>=0), ????=1??2IntegralintheLaplaceDomainII
Multiplicationbyt
Multiplicationbyt:Example
ConvolutionTheconvolutionofsignalsfandg,denoted?=?????,isthesignal???=0?????????????????Sameas???=0?????????????????;inotherwords?????=?????(verygreat)importancewillsooneclearIntermsofLaplaceTransform:????=??????(??)LaplaceTransformturnsconvolutionintomultiplication.Convolution:ProveLet’sshowthat??????=????????????=??=0∞(??=0?????????????????)???????????=??=0∞??=0????????????????????????????Whereweintegrateoverthetriangle0≤??≤??Changeorderofintegration:????=??=0∞??=??∞??????????????????????????Changeviabletto??=?????;????=????;regionofintegrationes ??≥0,??≥0Convolution:Example
FindingtheLaplaceTransform
LaplaceTransformtablesLaplaceTransformforODEsEquationwithinitialconditionsLaplacetransformislinearApplyderivativeformulaRearrangeTaketheinverseLaplaceTransforminPDEsLaplacetransformintwovariables(alwaystakenwithrespecttotimevariable,t):Inverselaplaceofa2dimensionalPDE:CanbeusedforanydimensionPDE:ODEsreducetoalgebraicequationsPDEsreducetoeitheranODE(iforiginalequationdimension2)oranotherPDE(iforiginalequationdimension>2)TheTransformreduc
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025《建筑材料供應(yīng)合同》
- 策劃母親節(jié):營(yíng)銷(xiāo)新視角
- 高效辦公秘籍
- 護(hù)理疾病查房模板
- 英語(yǔ)●天津卷丨2023年3月普通高等學(xué)校招生全國(guó)統(tǒng)一考試英語(yǔ)試卷及答案
- 2025年車(chē)庫(kù)坡道用漆項(xiàng)目提案報(bào)告模板
- 考驗(yàn)政治試題及答案解析
- 文學(xué)社采評(píng)面試題及答案
- 武警退役面試題及答案
- 2025至2030年中國(guó)成套控制柜行業(yè)投資前景及策略咨詢(xún)報(bào)告
- 加入民盟的申請(qǐng)書(shū)完整版
- 電梯安裝標(biāo)準(zhǔn)合同模板
- 松下NPM貼片機(jī)基本操作培訓(xùn)教程課件
- 公司車(chē)輛駕駛扣分違章處理證明 模板
- 一次性賠償協(xié)議書(shū)模板
- (中職)車(chē)削加工技術(shù)全冊(cè)實(shí)訓(xùn)課教案完整版
- 幼兒園繪本故事:《漏》
- 便攜式小板凳設(shè)計(jì)方案
- 《群落生態(tài)學(xué)》PPT課件(完整版)
- 河北工業(yè)大學(xué)C++終極題庫(kù)
- (完整版)應(yīng)征公民走訪(fǎng)調(diào)查表(樣表)
評(píng)論
0/150
提交評(píng)論