




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
9.3用正多邊形鋪設(shè)地面數(shù)學(xué)(華東師大版)七年級(jí)
下冊(cè)第9章
多邊形學(xué)習(xí)目標(biāo)1、掌握和運(yùn)用正多邊形的內(nèi)角和外角的計(jì)算;2、運(yùn)用正多邊形的內(nèi)角和外角解決問(wèn)題;3、掌握用多種正多邊形拼成平面的規(guī)律及其運(yùn)用;
導(dǎo)入新課
導(dǎo)入新課
導(dǎo)入新課
好漂亮的地板!這是怎么鋪設(shè)的?一點(diǎn)空隙也沒(méi)有.講授新課用同一種正多邊形鋪地板,哪些能密鋪不留空隙呢?這顯然與正多邊形的內(nèi)角大小有關(guān).知識(shí)點(diǎn)一
正多邊形內(nèi)角和外角的計(jì)算講授新課回答下列問(wèn)題:1.什么叫正多邊形?2.n
邊形的內(nèi)角和是什么?正n
邊形的內(nèi)角怎么表示?外角和是什么?如果多邊形的各邊都相等,各內(nèi)角也都相等,那么就稱(chēng)它為正多邊形.①
n邊形的內(nèi)角和公式:(n–2)×180°②
n邊形的外角和:360°③正n邊形每個(gè)內(nèi)角
=講授新課問(wèn)題回想正多邊形的性質(zhì),你知道正多邊形的每個(gè)內(nèi)角是多少度嗎?每個(gè)外角呢?為什么?正多邊形的性質(zhì):各邊都相等、各內(nèi)角也都相等多邊形內(nèi)角和定理:n邊形的內(nèi)角和等于(n-2)·180°.多邊形外角和定理:任意多邊形的外角和等于360°.每個(gè)內(nèi)角的度數(shù)是每個(gè)外角的度數(shù)是講授新課請(qǐng)根據(jù)下圖,完成表格.正多邊形的邊數(shù)34567…n正多邊形的內(nèi)角和…正多邊形每個(gè)內(nèi)角的大小…講授新課60°×6=360°正三角形瓷磚60°60°60°60°60°60°正四邊形瓷磚90°90°90°90°90°×4=360°講授新課正五邊形瓷磚108°108°108°108°×3=324°正六邊形瓷磚120°120°120°120°×3=360°正八邊形瓷磚135°135°135°135°×3=405°講授新課練一練(1)若一個(gè)正多邊形的內(nèi)角是120°,那么這是正____邊形.(2)已知多邊形的每個(gè)外角都是45°,則這個(gè)多邊形是______邊形.六正八講授新課知識(shí)點(diǎn)二
用相同的正多邊形鋪設(shè)地面合作探究問(wèn)題1
正三角形能否鋪滿地面?60°60°60°60°60°60°由圖可知,6個(gè)正三角形可以無(wú)縫拼接,所以正三角形能鋪滿地面.講授新課問(wèn)題2
正方形能否鋪滿地面?90°由圖可知,4個(gè)正方形可以無(wú)縫拼接,所以正方形能鋪滿地面.講授新課120°120°120°問(wèn)題3
正六邊形能否鋪滿地面?由圖可知,3個(gè)正六邊形可以無(wú)縫拼接,所以正六邊形能鋪滿地面.講授新課123思考1.∠1+∠2+∠3=?問(wèn)題4
正五邊形能否鋪滿地面?2.為什么正五邊形不能鋪滿地面,而正六邊形能呢?由圖可知,正五邊形不能無(wú)縫拼接,所以正五邊形不能鋪滿地面.324°講授新課概括總結(jié)
使用給定的某種正多邊形,當(dāng)圍繞一點(diǎn)拼在一起的幾個(gè)內(nèi)角加在一起恰好組成一個(gè)周角時(shí),就可以鋪滿地面.
圖形一個(gè)頂點(diǎn)周?chē)噙呅蔚膫€(gè)數(shù)
能能能正三角形正方形正五邊形正六邊形643不能能否鋪滿平面90°一個(gè)內(nèi)角度數(shù)108°60°120°用相同正多邊形可以鋪滿地面的條件:正多邊形的每個(gè)內(nèi)角都能被360o整除.
歸納總結(jié)講授新課知識(shí)點(diǎn)三
用多種正多邊形鋪設(shè)地面問(wèn)題從正三角形、正方形、正五邊形、正六邊形、正八邊形、正十邊形、正十二邊形中任取兩種進(jìn)行組合是否能鋪滿地面呢?合作探究正方形、正三角形講授新課正六邊形、正三角形講授新課正六邊形、正方形、正三角形講授新課正十二邊形、正三角形講授新課正八邊形、正方形講授新課多種正多邊形拼地板:圍繞一點(diǎn)拼在一起的多種正多邊形的內(nèi)角之和為360o。關(guān)鍵:歸納總結(jié)注:有時(shí)幾種正多邊形的組合能?chē)@一點(diǎn)拼成周角,但不能擴(kuò)展到整個(gè)平面,即不能鋪滿平面。如:正五邊形與正十邊形的組合。模型:正多邊形1的個(gè)數(shù)×正多邊形1的內(nèi)角度數(shù)+
正多邊形2的個(gè)數(shù)×正多邊形2的內(nèi)角度數(shù)+…=360o當(dāng)堂檢測(cè)1.用一種正多邊形能進(jìn)行平面鋪設(shè)的條件是()A.內(nèi)角都是整數(shù)度數(shù)B.邊數(shù)是3的整數(shù)倍C.內(nèi)角整除180°D.內(nèi)角整除360°D2.下列正多邊形的地磚中,不能鋪滿地面的正多邊形是()A.正三角形 B.正方形C.正五邊形 D.正六邊形3.用同一種正六邊形拼成一個(gè)平面時(shí),在每一個(gè)頂點(diǎn)處有_______個(gè)正六邊形.C3當(dāng)堂檢測(cè)4.鋪設(shè)一間長(zhǎng)6m、寬3.5m的客廳地面需要同樣規(guī)格的正方形地板磚,現(xiàn)有“40cm×40cm”“30cm×30cm”“50cm×50cm”和“60cm×60cm”的地板磚,請(qǐng)你設(shè)計(jì)一下,要想全部鋪滿,不鋸破且不留一點(diǎn)空隙,選哪一種規(guī)格?為什么?需要多少塊?解:選“50cm×50cm”規(guī)格的.理由:∵6m=600cm,3.5m=350cm,600,350都是50的倍數(shù),∴選“50cm×50cm”規(guī)格的.需要7×12=84(塊).當(dāng)堂檢測(cè)5.如圖,正多邊形A,B,C密鋪地面,其中A為正六邊形,C為正方形,請(qǐng)通過(guò)計(jì)算求出正多邊形B的邊數(shù).解:設(shè)正多邊形B的邊數(shù)為n,∵一個(gè)點(diǎn)處由1個(gè)正六邊形、1個(gè)正方形、1個(gè)多邊形B組成,則正多邊形B的一個(gè)內(nèi)角的度數(shù)為360°–120°–90°=150°,則(n–2)·180°=
n·150°,
解得n=
12.∴正多邊形B
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年二手車(chē)抵押個(gè)人合同范本
- 2025合同類(lèi)型的選擇指南
- 中考語(yǔ)文大盤(pán)點(diǎn)試題及答案
- 軟件評(píng)測(cè)師核心考點(diǎn)梳理試題及答案
- 關(guān)注細(xì)節(jié)2025年網(wǎng)絡(luò)規(guī)劃設(shè)計(jì)師考試試題及答案
- 組織的知識(shí)試題及答案
- 重要信息管理與MS Office試題總結(jié)
- 競(jìng)爭(zhēng)優(yōu)勢(shì)2025年系統(tǒng)分析師考試試題及答案
- 系統(tǒng)集成項(xiàng)目管理考點(diǎn)回顧試題及答案
- 2025年上海市房屋出租經(jīng)紀(jì)服務(wù)合同
- MOOC 灰色系統(tǒng)理論-南京航空航天大學(xué) 中國(guó)大學(xué)慕課答案
- 2023年-2024年新《管理學(xué)原理》考試題庫(kù)(含答案)
- 深圳市企業(yè)數(shù)據(jù)合規(guī)指引
- 新能源汽車(chē)電機(jī)軸項(xiàng)目實(shí)施方案
- 2023年山東省青島市中考地理試卷(附詳細(xì)答案)
- 老年人能力評(píng)估標(biāo)準(zhǔn)解讀(講義)課件
- RTO工藝流程簡(jiǎn)介
- 電機(jī)行業(yè)報(bào)告
- 四年級(jí)下冊(cè)道德與法治知識(shí)點(diǎn)歸納
- 小學(xué)標(biāo)準(zhǔn)作文稿紙模板
- 工程計(jì)量及合同結(jié)算支付流程圖
評(píng)論
0/150
提交評(píng)論