內(nèi)蒙古自治區(qū)鄂爾多斯市東勝區(qū)第二中學2024-2025學年初三5月教學質(zhì)量檢測試題數(shù)學試題試卷含解析_第1頁
內(nèi)蒙古自治區(qū)鄂爾多斯市東勝區(qū)第二中學2024-2025學年初三5月教學質(zhì)量檢測試題數(shù)學試題試卷含解析_第2頁
內(nèi)蒙古自治區(qū)鄂爾多斯市東勝區(qū)第二中學2024-2025學年初三5月教學質(zhì)量檢測試題數(shù)學試題試卷含解析_第3頁
內(nèi)蒙古自治區(qū)鄂爾多斯市東勝區(qū)第二中學2024-2025學年初三5月教學質(zhì)量檢測試題數(shù)學試題試卷含解析_第4頁
內(nèi)蒙古自治區(qū)鄂爾多斯市東勝區(qū)第二中學2024-2025學年初三5月教學質(zhì)量檢測試題數(shù)學試題試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

內(nèi)蒙古自治區(qū)鄂爾多斯市東勝區(qū)第二中學2024-2025學年初三5月教學質(zhì)量檢測試題數(shù)學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.化簡:(a+)(1﹣)的結(jié)果等于()A.a(chǎn)﹣2 B.a(chǎn)+2 C. D.2.某校在國學文化進校園活動中,隨機統(tǒng)計50名學生一周的課外閱讀時間如表所示,這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是()學生數(shù)(人)5814194時間(小時)678910A.14,9 B.9,9 C.9,8 D.8,93.小紅上學要經(jīng)過兩個十字路口,每個路口遇到紅、綠燈的機會都相同,小紅希望上學時經(jīng)過每個路口都是綠燈,但實際這樣的機會是()A. B. C. D.4.如圖,等腰三角形ABC底邊BC的長為4cm,面積為12cm2,腰AB的垂直平分線EF交AB于點E,交AC于點F,若D為BC邊上的中點,M為線段EF上一點,則△BDM的周長最小值為()A.5cm B.6cm C.8cm D.10cm5.在平面直角坐標系中,若點A(a,-b)在第一象限內(nèi),則點B(a,b)所在的象限是()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限6.若代數(shù)式2x2+3x﹣1的值為1,則代數(shù)式4x2+6x﹣1的值為()A.﹣3 B.﹣1 C.1 D.37.在某?!拔业闹袊鴫簟毖葜v比賽中,有9名學生參加決賽,他們決賽的最終成績各不相同.其中的一名學生想要知道自己能否進入前5名,不僅要了解自己的成績,還要了解這9名學生成績的()A.眾數(shù) B.方差 C.平均數(shù) D.中位數(shù)8.在一次酒會上,每兩人都只碰一次杯,如果一共碰杯55次,則參加酒會的人數(shù)為(

)A.9人 B.10人 C.11人 D.12人9.如圖,AB∥CD,F(xiàn)E⊥DB,垂足為E,∠1=60°,則∠2的度數(shù)是()A.60° B.50° C.40° D.30°10.如圖,△ABC中,∠CAB=65°,在同一平面內(nèi),將△ABC繞點A旋轉(zhuǎn)到△AED的位置,使得DC∥AB,則∠BAE等于()A.30° B.40° C.50° D.60°二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,直線l1∥l2∥l3,等邊△ABC的頂點B、C分別在直線l2、l3上,若邊BC與直線l3的夾角∠1=25°,則邊AB與直線l1的夾角∠2=________.12.若A(﹣3,y1),B(﹣2,y2),C(1,y3)三點都在y=的圖象上,則yl,y2,y3的大小關系是_____.(用“<”號填空)13.兩個等腰直角三角板如圖放置,點F為BC的中點,AG=1,BG=3,則CH的長為__________.14.對于實數(shù),我們用符號表示兩數(shù)中較小的數(shù),如.因此,________;若,則________.15.在一個不透明的袋子中裝有除顏色外其他均相同的3個紅球和2個白球,從中任意摸出一個球,則摸出白球的概率是_____.16.如圖,在△ABC中,∠ACB=90°,∠ABC=60°,AB=6cm,將△ABC以點B為中心順時針旋轉(zhuǎn),使點C旋轉(zhuǎn)到AB邊延長線上的點D處,則AC邊掃過的圖形(陰影部分)的面積是_____cm1.(結(jié)果保留π).三、解答題(共8題,共72分)17.(8分)已知如圖,直線y=﹣x+4與x軸相交于點A,與直線y=x相交于點P.(1)求點P的坐標;(2)動點E從原點O出發(fā),沿著O→P→A的路線向點A勻速運動(E不與點O、A重合),過點E分別作EF⊥x軸于F,EB⊥y軸于B.設運動t秒時,F(xiàn)的坐標為(a,0),矩形EBOF與△OPA重疊部分的面積為S.直接寫出:S與a之間的函數(shù)關系式(3)若點M在直線OP上,在平面內(nèi)是否存在一點Q,使以A,P,M,Q為頂點的四邊形為矩形且滿足矩形兩邊AP:PM之比為1:若存在直接寫出Q點坐標。若不存在請說明理由。18.(8分)某商人制成了一個如圖所示的轉(zhuǎn)盤,取名為“開心大轉(zhuǎn)盤”,游戲規(guī)定:參與者自由轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針指向字母“A”,則收費2元,若指針指向字母“B”,則獎勵3元;若指針指向字母“C”,則獎勵1元.一天,前來尋開心的人轉(zhuǎn)動轉(zhuǎn)盤80次,你認為該商人是盈利的可能性大還是虧損的可能性大?為什么?19.(8分)某跳水隊為了解運動員的年齡情況,作了一次年齡調(diào)查,根據(jù)跳水運動員的年齡(單位:歲),繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關信息,解答下列問題:本次接受調(diào)查的跳水運動員人數(shù)為,圖①中m的值為;求統(tǒng)計的這組跳水運動員年齡數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).20.(8分)為鼓勵大學畢業(yè)生自主創(chuàng)業(yè),某市政府出臺了相關政策:由政府協(xié)調(diào),本市企業(yè)按成本價提供產(chǎn)品給大學畢業(yè)生自主銷售,成本價與出廠價之間的差價由政府承擔.李明按照相關政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價為每件元,出廠價為每件元,每月銷售量(件)與銷售單價(元)之間的關系近似滿足一次函數(shù):.李明在開始創(chuàng)業(yè)的第一個月將銷售單價定為元,那么政府這個月為他承擔的總差價為多少元?設李明獲得的利潤為(元),當銷售單價定為多少元時,每月可獲得最大利潤?物價部門規(guī)定,這種節(jié)能燈的銷售單價不得高于元.如果李明想要每月獲得的利潤不低于元,那么政府為他承擔的總差價最少為多少元?21.(8分)化簡:22.(10分)已知,拋物線y=ax2+c過點(-2,2)和點(4,5),點F(0,2)是y軸上的定點,點B是拋物線上除頂點外的任意一點,直線l:y=kx+b經(jīng)過點B、F且交x軸于點A.(1)求拋物線的解析式;(2)①如圖1,過點B作BC⊥x軸于點C,連接FC,求證:FC平分∠BFO;②當k=時,點F是線段AB的中點;(3)如圖2,M(3,6)是拋物線內(nèi)部一點,在拋物線上是否存在點B,使△MBF的周長最???若存在,求出這個最小值及直線l的解析式;若不存在,請說明理由.23.(12分)如圖,在平面直角坐標系中,直線:與軸,軸分別交于,兩點,且點,點在軸正半軸上運動,過點作平行于軸的直線.(1)求的值和點的坐標;(2)當時,直線與直線交于點,反比例函數(shù)的圖象經(jīng)過點,求反比例函數(shù)的解析式;(3)當時,若直線與直線和(2)反比例函數(shù)的圖象分別交于點,,當間距離大于等于2時,求的取值范圍.24.某區(qū)域平面示意圖如圖,點O在河的一側(cè),AC和BC表示兩條互相垂直的公路.甲勘測員在A處測得點O位于北偏東45°,乙勘測員在B處測得點O位于南偏西73.7°,測得AC=840m,BC=500m.請求出點O到BC的距離.參考數(shù)據(jù):sin73.7°≈,cos73.7°≈,tan73.7°≈

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

解:原式====.故選B.考點:分式的混合運算.2、C【解析】

解:觀察、分析表格中的數(shù)據(jù)可得:∵課外閱讀時間為1小時的人數(shù)最多為11人,∴眾數(shù)為1.∵將這組數(shù)據(jù)按照從小到大的順序排列,第25個和第26個數(shù)據(jù)的均為2,∴中位數(shù)為2.故選C.本題考查(1)眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù);(2)中位數(shù)的確定要分兩種情況:①當數(shù)據(jù)組中數(shù)據(jù)的總個數(shù)為奇數(shù)時,把所有數(shù)據(jù)按從小到大的順序排列,中間的那個數(shù)就是中位數(shù);②當數(shù)據(jù)組中數(shù)據(jù)的總個數(shù)為偶數(shù)時,把所有數(shù)據(jù)按從小到大的順序排列,中間的兩個數(shù)的平均數(shù)是這組數(shù)據(jù)的中位數(shù).3、C【解析】

列舉出所有情況,看每個路口都是綠燈的情況數(shù)占總情況數(shù)的多少即可得.【詳解】畫樹狀圖如下,共4種情況,有1種情況每個路口都是綠燈,所以概率為.故選C.4、C【解析】

連接AD,由于△ABC是等腰三角形,點D是BC邊的中點,故AD⊥BC,再根據(jù)三角形的面積公式求出AD的長,再根據(jù)EF是線段AB的垂直平分線可知,點B關于直線EF的對稱點為點A,故AD的長為BM+MD的最小值,由此即可得出結(jié)論.【詳解】如圖,連接AD.∵△ABC是等腰三角形,點D是BC邊的中點,∴AD⊥BC,∴S△ABC=BC?AD=×4×AD=12,解得:AD=6(cm).∵EF是線段AB的垂直平分線,∴點B關于直線EF的對稱點為點A,∴AD的長為BM+MD的最小值,∴△BDM的周長最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8(cm).故選C.本題考查的是軸對稱﹣最短路線問題,熟知等腰三角形三線合一的性質(zhì)是解答此題的關鍵.5、D【解析】

先根據(jù)第一象限內(nèi)的點的坐標特征判斷出a、b的符號,進而判斷點B所在的象限即可.【詳解】∵點A(a,-b)在第一象限內(nèi),∴a>0,-b>0,∴b<0,∴點B((a,b)在第四象限,故選D.本題考查了點的坐標,解決本題的關鍵是牢記平面直角坐標系中各個象限內(nèi)點的符號特征:第一象限正正,第二象限負正,第三象限負負,第四象限正負.6、D【解析】

由2x2+1x﹣1=1知2x2+1x=2,代入原式2(2x2+1x)﹣1計算可得.【詳解】解:∵2x2+1x﹣1=1,∴2x2+1x=2,則4x2+6x﹣1=2(2x2+1x)﹣1=2×2﹣1=4﹣1=1.故本題答案為:D.本題主要考查代數(shù)式的求值,運用整體代入的思想是解題的關鍵.7、D【解析】

根據(jù)中位數(shù)是一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個數(shù)(最中間兩個數(shù)的平均數(shù))的意義,9人成績的中位數(shù)是第5名的成績.參賽選手要想知道自己是否能進入前5名,只需要了解自己的成績以及全部成績的中位數(shù),比較即可.【詳解】由于總共有9個人,且他們的分數(shù)互不相同,第5的成績是中位數(shù),要判斷是否進入前5名,故應知道中位數(shù)的多少.故本題選:D.本題考查了統(tǒng)計量的選擇,熟練掌握眾數(shù),方差,平均數(shù),中位數(shù)的概念是解題的關鍵.8、C【解析】

設參加酒會的人數(shù)為x人,根據(jù)每兩人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【詳解】設參加酒會的人數(shù)為x人,依題可得:

x(x-1)=55,

化簡得:x2-x-110=0,

解得:x1=11,x2=-10(舍去),

故答案為C.考查了一元二次方程的應用,解題的關鍵是根據(jù)題中的等量關系列出方程.9、D【解析】

由EF⊥BD,∠1=60°,結(jié)合三角形內(nèi)角和為180°即可求出∠D的度數(shù),再由“兩直線平行,同位角相等”即可得出結(jié)論.【詳解】解:在△DEF中,∠1=60°,∠DEF=90°,

∴∠D=180°-∠DEF-∠1=30°.

∵AB∥CD,

∴∠2=∠D=30°.

故選D.本題考查平行線的性質(zhì)以及三角形內(nèi)角和為180°,解題關鍵是根據(jù)平行線的性質(zhì),找出相等、互余或互補的角.10、C【解析】試題分析:∵DC∥AB,∴∠DCA=∠CAB=65°.∵△ABC繞點A旋轉(zhuǎn)到△AED的位置,∴∠BAE=∠CAD,AC=AD.∴∠ADC=∠DCA="65°."∴∠CAD=180°﹣∠ADC﹣∠DCA="50°."∴∠BAE=50°.故選C.考點:1.面動旋轉(zhuǎn)問題;2.平行線的性質(zhì);3.旋轉(zhuǎn)的性質(zhì);4.等腰三角形的性質(zhì).二、填空題(本大題共6個小題,每小題3分,共18分)11、35【解析】試題分析:如圖:∵△ABC是等邊三角形,∴∠ABC=60°,又∵直線l1∥l2∥l3,∠1=25°,∴∠1=∠3=25°.∴∠4=60°-25°=35°,∴∠2=∠4=35°.考點:1.平行線的性質(zhì);2.等邊三角形的性質(zhì).12、y3<y1<y1【解析】

根據(jù)反比例函數(shù)的性質(zhì)k<0時,在每個象限,y隨x的增大而增大,進行比較即可.【詳解】解:k=-1<0,∴在每個象限,y隨x的增大而增大,∵-3<-1<0,∴0<y1<y1.又∵1>0∴y3<0∴y3<y1<y1故答案為:y3<y1<y1本題考查的是反比例函數(shù)的性質(zhì),理解性質(zhì):當k>0時,在每個象限,y隨x的增大而減小,k<0時,在每個象限,y隨x的增大而增大是解題的關鍵.13、【解析】

依據(jù)∠B=∠C=45°,∠DFE=45°,即可得出∠BGF=∠CFH,進而得到△BFG∽△CHF,依據(jù)相似三角形的性質(zhì),即可得到=,即=,即可得到CH=.【詳解】解:∵AG=1,BG=3,∴AB=4,∵△ABC是等腰直角三角形,∴BC=4,∠B=∠C=45°,∵F是BC的中點,∴BF=CF=2,∵△DEF是等腰直角三角形,∴∠DFE=45°,∴∠CFH=180°﹣∠BFG﹣45°=135°﹣∠BFG,又∵△BFG中,∠BGF=180°﹣∠B﹣∠BFG=135°﹣∠BFG,∴∠BGF=∠CFH,∴△BFG∽△CHF,∴=,即=,∴CH=,故答案為.本題主要考查了相似三角形的判定與性質(zhì),在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用.14、2或-1.【解析】①∵--,∴min{-,-}=-;②∵min{(x?1)2,x2}=1,∴當x>0.5時,(x?1)2=1,∴x?1=±1,∴x?1=1,x?1=?1,解得:x1=2,x2=0(不合題意,舍去),當x?0.5時,x2=1,解得:x1=1(不合題意,舍去),x2=?1,15、【解析】

根據(jù)隨機事件概率大小的求法,找準兩點:①符合條件的情況數(shù)目;②全部情況的總數(shù).二者的比值就是其發(fā)生的概率的大小.【詳解】解:∵在一個不透明的袋子中裝有除顏色外其他均相同的3個紅球和2個白球,∴從中任意摸出一個球,則摸出白球的概率是.故答案為:.本題考查概率的求法與運用,一般方法為:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=16、9π【解析】

根據(jù)直角三角形兩銳角互余求出∠BAC=30°,再根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半可得BC=AB,然后求出陰影部分的面積=S扇形ABE﹣S扇形BCD,列計算即可得解.【詳解】∵∠C是直角,∠ABC=60°,∴∠BAC=90°﹣60°=30°,∴BC=AB=×6=3(cm),∵△ABC以點B為中心順時針旋轉(zhuǎn)得到△BDE,∴S△BDE=S△ABC,∠ABE=∠CBD=180°﹣60°=110°,∴陰影部分的面積=S扇形ABE+S△BDE﹣S扇形BCD﹣S△ABC=S扇形ABE﹣S扇形BCD=﹣=11π﹣3π=9π(cm1).故答案為9π.本題考查了旋轉(zhuǎn)的性質(zhì),扇形的面積計算,直角三角形30°角所對的直角邊等于斜邊的一半的性質(zhì),求出陰影部分的面積等于兩個扇形的面積的差是解題的關鍵.三、解答題(共8題,共72分)17、(1);(2);(3)【解析】

(1)聯(lián)立兩直線解析式,求出交點P坐標即可;(2)由F坐標確定出OF的長,得到E的橫坐標為a,代入直線OP解析式表示出E縱坐標,即為EF的長,分兩種情況考慮:當時,矩形EBOF與三角形OPA重疊部分為直角三角形OEF,表示出三角形OEF面積S與a的函數(shù)關系式;當時,重合部分為直角梯形面積,求出S與a函數(shù)關系式.(3)根據(jù)(1)所求,先求得A點坐標,再確定AP和PM的長度分別是2和2,又由OP=2,得到P怎么平移會得到M,按同樣的方法平移A即可得到Q.【詳解】解:(1)聯(lián)立得:,解得:;∴P的坐標為;(2)分兩種情況考慮:當時,由F坐標為(a,0),得到OF=a,把E橫坐標為a,代入得:即此時當時,重合的面積就是梯形面積,F(xiàn)點的橫坐標為a,所以E點縱坐標為M點橫坐標為:-3a+12,∴所以;(3)令中的y=0,解得:x=4,則A的坐標為(4,0)則AP=,則PM=2又∵OP=∴點P向左平移3個單位在向下平移可以得到M1點P向右平移3個單位在向上平移可以得到M2∴A向左平移3個單位在向下平移可以得到Q1(1,-)A向右平移3個單位在向上平移可以得到Q1(7,)所以,存在Q點,且坐標是本題考查一次函數(shù)綜合題、勾股定理以及逆定理、矩形的性質(zhì)、全等三角形的判定和性質(zhì)、解直角三角形等知識,解題的關鍵是學會用分類討論的思想思考問題,屬于中考壓軸題.18、商人盈利的可能性大.【解析】試題分析:根據(jù)幾何概率的定義,面積比即概率.圖中A,B,C所占的面積與總面積之比即為A,B,C各自的概率,算出相應的可能性,乘以錢數(shù),比較即可.試題解析:商人盈利的可能性大.商人收費:80××2=80(元),商人獎勵:80××3+80××1=60(元),因為80>60,所以商人盈利的可能性大.19、(1)40人;1;(2)平均數(shù)是15;眾數(shù)16;中位數(shù)15.【解析】

(1)用13歲年齡的人數(shù)除以13歲年齡的人數(shù)所占的百分比,即可得本次接受調(diào)查的跳水運動員人數(shù);用16歲年齡的人數(shù)除以本次接受調(diào)查的跳水運動員人數(shù)即可求得m的值;(2)根據(jù)統(tǒng)計圖中給出的信息,結(jié)合求平均數(shù)、眾數(shù)、中位數(shù)的方法求解即可.【詳解】解:(1)4÷10%=40(人),m=100-27.5-25-7.5-10=1;故答案為40,1.(2)觀察條形統(tǒng)計圖,∵,∴這組數(shù)據(jù)的平均數(shù)為15;∵在這組數(shù)據(jù)中,16出現(xiàn)了12次,出現(xiàn)的次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)為16;∵將這組數(shù)據(jù)按照從小到大的順序排列,其中處于中間的兩個數(shù)都是15,有,∴這組數(shù)據(jù)的中位數(shù)為15.本題考查了條形統(tǒng)計圖,扇形統(tǒng)計圖,掌握平均數(shù)、眾數(shù)和中位數(shù)的定義是解題的關鍵.20、(1)政府這個月為他承擔的總差價為644元;(2)當銷售單價定為34元時,每月可獲得最大利潤144元;(3)銷售單價定為25元時,政府每個月為他承擔的總差價最少為544元.【解析】試題分析:(1)把x=24代入y=﹣14x+544求出銷售的件數(shù),然后求出政府承擔的成本價與出廠價之間的差價;(2)由利潤=銷售價﹣成本價,得w=(x﹣14)(﹣14x+544),把函數(shù)轉(zhuǎn)化成頂點坐標式,根據(jù)二次函數(shù)的性質(zhì)求出最大利潤;(3)令﹣14x2+644x﹣5444=2,求出x的值,結(jié)合圖象求出利潤的范圍,然后設設政府每個月為他承擔的總差價為p元,根據(jù)一次函數(shù)的性質(zhì)求出總差價的最小值.試題解析:(1)當x=24時,y=﹣14x+544=﹣14×24+544=344,344×(12﹣14)=344×2=644元,即政府這個月為他承擔的總差價為644元;(2)依題意得,w=(x﹣14)(﹣14x+544)=﹣14x2+644x﹣5444=﹣14(x﹣34)2+144∵a=﹣14<4,∴當x=34時,w有最大值144元.即當銷售單價定為34元時,每月可獲得最大利潤144元;(3)由題意得:﹣14x2+644x﹣5444=2,解得:x1=24,x2=1.∵a=﹣14<4,拋物線開口向下,∴結(jié)合圖象可知:當24≤x≤1時,w≥2.又∵x≤25,∴當24≤x≤25時,w≥2.設政府每個月為他承擔的總差價為p元,∴p=(12﹣14)×(﹣14x+544)=﹣24x+3.∵k=﹣24<4.∴p隨x的增大而減小,∴當x=25時,p有最小值544元.即銷售單價定為25元時,政府每個月為他承擔的總差價最少為544元.考點:二次函數(shù)的應用.21、x+2【解析】

先把括號里的分式通分,化簡,再計算除法.【詳解】解:原式==x+2此題重點考察學生對分式的化簡的應用,掌握通分和約分是解題的關鍵.22、(1);(2)①見解析;②;(3)存在點B,使△MBF的周長最?。鱉BF周長的最小值為11,直線l的解析式為.【解析】

(1)用待定系數(shù)法將已知兩點的坐標代入拋物線解析式即可解答.(2)①由于BC∥y軸,容易看出∠OFC=∠BCF,想證明∠BFC=∠OFC,可轉(zhuǎn)化為求證∠BFC=∠BCF,根據(jù)“等邊對等角”,也就是求證BC=BF,可作BD⊥y軸于點D,設B(m,),通過勾股定理用表示出的長度,與相等,即可證明.②用表示出點的坐標,運用勾股定理表示出的長度,令,解關于的一元二次方程即可.(3)求折線或者三角形周長的最小值問題往往需要將某些線段代換轉(zhuǎn)化到一條直線上,再通過“兩點之間線段最短”或者“垂線段最短”等定理尋找最值.本題可過點M作MN⊥x軸于點N,交拋物線于點B1,過點B作BE⊥x軸于點E,連接B1F,通過第(2)問的結(jié)論將△MBF的邊轉(zhuǎn)化為,可以發(fā)現(xiàn),當點運動到位置時,△MBF周長取得最小值,根據(jù)求平面直角坐標系里任意兩點之間的距離的方法代入點與的坐標求出的長度,再加上即是△MBF周長的最小值;將點的橫坐標代入二次函數(shù)求出,再聯(lián)立與的坐標求出的解析式即可.【詳解】(1)解:將點(-2,2)和(4,5)分別代入,得:解得:∴拋物線的解析式為:.(2)①證明:過點B作BD⊥y軸于點D,設B(m,),∵BC⊥x軸,BD⊥y軸,F(xiàn)(0,2)∴BC=,BD=|m|,DF=∴B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論