




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第22講圖形與相似
典例精練
【例1】(2023杭州)如圖,在△ABC中,AB=AC,NA<90。,點D,E,F分別在邊AB,BC,CA上,連接DE,EF,FD,已知
點B和點F關(guān)于直線DE對稱.設(shè)器=k,若AD=DF,則會=(結(jié)果用含k的代數(shù)式表示).
[例2]如圖,在△ABC中,AB=2小,AC=4其8c=6,,M為AB的中點,在線段AC上取一點電使小AM
N與4ABC相似,則線段MN的長為.
針對訓練
1.如圖,在平面直角坐標系中,△ABC的三個頂點分別為A(1,2),B(2,1),C(3,2),現(xiàn)以原點O為位似中心,在第一象
限內(nèi)作與4ABC相似比為2的位似圖形△A'B'C,則頂點C的坐標是()
D.(5,4)
2.(2024樂山)如圖,在梯形ABCD中,AD〃:BC,對角線AC和BD相交于點O.若修
3.如圖,在三角形紙片ABC中.AC=6,BC=9,分別沿與BC,AC平行的方向,從靠近A的AB邊的三等分點剪去兩個
角,得到的平行四邊形紙片的周長是.
4.(2023廣東)邊長分別為10,6,4的三個正方形拼接在一起,它們的底邊在同一條直線上(如圖),則圖中陰影
部分的面積為.
5.如圖,在△ABC中,/ACB=9(F,CDJ_AB于點D.
(1)AC=8,BC=6,AB=,CD=;
(2)CD=4,BD=3,BC=,AD=,AC=,
6.如圖,在△ABC中,CD是邊AB上的高,且終=求證:4ACB=90。.
c
7.如圖,點D,E,G在△ABC的三邊上,DE\\BC?DE交AG于點F.求證:笠=?
8.(2023邵陽)如圖,(CA^AD,ED^AD,,B是線段AD上一點,且(CB團BE,已知ABAB=8,AC=6,DE=4.
⑴求證:4ABe~4DEB;
(2)求線段BD的長.
9.如圖,在矩形ABCD中,E,F分別是AB,AD上的點且.DE回CF于點G,求證:號=三.
10.如圖在△4BC中,AB=AC,,BE和CD是△ABC的中線.
(1)求證:BE=CD;
(2)求黑的值.
UD
11.如圖,在AABC中,P為邊AB上一點.若乙4cp=NB,求證:AC2=AP-AB.
12.如圖,在等腰三角形ABC中,^BAC=120°,AB=AC,,D是BC上的一個動點(不與點B,C重合),在
AC上取一點E,使UDE=30。,求證:△ABD~△DCE.
13.如圖在△語中點D,E,F分別在邊AB,AC,BC上,連接DE,EF.已知四邊形BFED是平行四邊形蔗*
A
B
FC
⑴若AB=8,求線段AD的長
(2)若4ADE的面積為1,求平行四邊形BFED的面積.
14.如圖在正方形ABCD中,M是BC的中點,N為CD上一點,且(CN:ND=1:3,求證:AMXMN.
15.如圖,在△ABC中,D是BC的中點,E是AD的中點,BE的延長線交AC于點F,求差的值.
BDC
16.如圖,已知銳角△4BC,BC長為12,高AD長為8.矩形PNMQ的邊QM在BC上,其余兩個頂點P,N分別
在AB.AC上,PN交AD于點E.
⑴求證:①器暇■②Q券
⑵求第勺值;
(3)若矩形PNMQ為正方形,求PN的值.
17.(2024上海)如圖,在矩形ABCD中,E為邊CD上一點,目.AE1BD.
⑴求證:AD2=DE-DC;
(2)F為線段AE的延長線上一點,連接CF.若EF=CF=坪D,求證:CE=AD.
18.(2024湖北)如圖在矩形ABCD中,E,F分別在AD,BC上,將四邊形ABFE沿EF翻折,使A的對稱點P落在C
D上,B的對稱點為G,PG交BC于點H.
(1)求證:AEDP-APCH.
⑵若P為CD的中點,且.AB=2,BC=3,求GH的長.
⑶連接BG若P為CD的中點,H為BC的中點探究BG與AB的數(shù)量關(guān)系,并說明理由.
第22講圖形與相似
典例精練
【例1】(2023杭州)如圖,在△ABC中.AB=AC,NA<90。點D,E,F分別在邊AB.BC,CA上,連接DE,EF,FD,已知
點B和點F關(guān)于直線DE對稱.設(shè)=k若AD=DF,則號=生(結(jié)果用含k的代數(shù)式表示).
ABFA2-
[例2]如圖,在△ABC中,AB=2AC=4強8C=6,,M為AB的中點,在線段AC上取一點電使4A
MN與△ABC相似,則線段MN的長為3或|.
針對訓練
1.如圖在平面直角坐標系中,△ABC的三個頂點分別為A(1,2),B(2,1),C(3,2),現(xiàn)以原點0為位似中心,在第一象
限內(nèi)作與4ABC相似比為2的位似圖形△A'B'C,則頂點C的坐標是(C)
2.(2024樂山)如圖,在梯形ABCD中,AD〃:BC,對角線AC和BD相交于點O.若學=[,則受些=《_.
、△BCD§、4BOC9
3.如圖.在三角形紙片ABC中.AC=6,BC=9,分別沿與BC,AC平行的方向,從靠近A的AB邊的三等分點剪去兩個
角,得到的平行四邊形紙片的周長是
4.(2023廣東)邊長分別為10,6,4的三個正方形拼接在一起,它們的底邊在同一條直線上(如圖),則圖中陰影
部分的面積為」建.
5.如圖在4ABC中./ACB=90o,CD_LAB于點D.
:1)AC=8,BC=6,AB=10,CD=";
--------5
⑵CD=4,BD=3,BC=5163,XC=y
6.如圖,在△ABC中CD是邊AB上的高,且=器求證:乙4cB=90。.
CDDU
證明::CD是邊AB上的高,,ZADC=ZCDB=90°.
又CD=BD,MACDs/\CBD"./A=/BCD.
ZA+ZACD=90°,
ZBCD+ZACD=90°,gPZACB=90°.
7.如圖,點D,E,G在小ABC的三邊上,DE〃BC,DE交AG于點F.求證:笠=冬
FEGC
證明::DE//BC,△ADFsAABG,AAFE^AAGC.
DF_AFFE_AF
??BG-AG'GC-AG'
DF_FE日口DF_BG
BG-GC'區(qū)FE-GC
8.(2023邵陽)如圖,(CA^AD,ED^AD,,B是線段AD上一點,且(CBE1BE.已知AB=8,AC=6,DE=4.
(1)求證:△ABC^ADEB;
⑵求線段BD的長.
解:⑴證明::CAJ_AD,ED_LAD,CBJ_BE,
,>.ZA=ZCBE=ZD=90°.
ZC+ZCBA=ZCBA+ZDBE=90°.
/C=NDBE.
/.AABC^ADEB.
ACAR
(2)???△ABC-△DEB,??.—.
、JDRnp
9,如圖在矩形ABCD中,E,F分別是AB,AD上的點,且DEMF于點G,求證:-=
證明::在矩形ABCD中2A=/CDF=90。,;.ZADE+ZCDG=90°.
VDE±CF,/.ZDCF+ZCDG=90°..\ZADE=ZDCF.
DE_AD
ADE?△DCF.
CF-DC
10.如圖,在△ABC中,AB=AC,BE和CDABC的中線.
⑴求證:BE=CD;
(2)求器的值
Utf
解:⑴證明::BE是4ABC的中線,二AE=|XC.
1
同理,AD=jAB.AB=AC,AD=AE.
在4ABE和4ACD中{AB=AC,N4=NA,
AE=AD,
:.AABE^△ACD(SAS).;.BE=CD.
(2):BE和CD是4ABC的中線,DE是4ABC的中位線.
.\DE/7BC,HDE=|BC..\AODE^AOCB.
.OE_DE_1
''OB~BC~2
11.如圖,在△ABC中,P為邊AB上一點若NACP=NB,求證:AC2=AP?AB.
證明:丁ZACP=ZB,ZA=ZA,
.,.△APC^AACB,
蒜AC=茄AP,:".c2D=apAT-t
12.如圖.在等腰三角形ABC中2BAC=12(r,AB=AC,D是BC上的一個動點(不與點B,C重合),在AC上取一點
E.使/ADE=30。,求證:△ABD^ADCE.
證明::AABC是等腰三角形,且/BAC=120。,
A
:.ZABD=ZACB=30°..\ZABD=ZADE=30°.
BDC
,?ZADC=ZADE+ZEDC=ZABD+ZDAB,
/.ZEDC=ZDAB.
AABD^ADCE.
13如圖,在△ABC中,點D,E,F分別在邊AB,AC,BC上,連接DE,EF.已知四邊形BFED是平行四邊形,絲=士
⑴若AB=8,求線段AD的長
⑵若△ADE的面積為1,求平行四邊形BFED的面積.
解:⑴:四邊形BFED是平行四邊形.二DE〃BF.DE〃BC.
AnT~)p1
??.△ADE△ABC..-.—=—=AB=8,??.AD=2.
ABBC4
(2)???△ADE-AABC,:.=(—)2=
''s4ABeBC16
AADE的面積為1,.\AABC的面積為16.
,/四邊形BFED是平行四邊形,;.EF〃AB.
???△EFCAABC.:.還跳=(-)2=
S^ABC16
.?.△EFC的面積為9.
^BBFED=S—BC-S^EFC—t^ADE=16—9—1=6.
14如圖,在正方形ABCD中,M是BC的中點,N為CD上一點,且(CN-.ND=1:3,求證:AM±MN.
證明:..?四邊形ABCD是正方形,
/.AB=BC=CD,ZB=ZC=90°.
:M是BC的中點,CN:ND=1:3,
AB_MC_
,BM~CN~'
△ABM^AMCN.
.\ZBAM=ZCMN.
?.?ZBAM+ZAMB=90°,
.*.ZAMB+ZCMN=90°.
ZAMN=90°.
AAM±MN.
15如圖,在△ABC中,D是BC的中點,E是AD的中點,BE的延長線交AC于點F,求蕓的值.
解:過點D作DG〃BF交AC于點G.
CG_CDAE_AF
"GF-BDrED-FG
VD是BC的中點,,BD=DC.;.CG=GF.
,/E是AD的中點,二AE=ED./.AF=FG.
;.AF=FG=CG.
AF_AF_1
FC-FG+GC-2
16.如圖,已知銳角△ABC,BC長為12,MAD長為8.矩形PNMQ的邊QM在BC上,其余兩個頂點P,N分別在A
B,AC±,PN交AD于點E.
⑴求證:①需暇②篇噂
(2)求.的值;
(3)若矩形PNMQ為正方形,求PN的值.
解:⑴證明:由矩形PNMQ得PN〃:BC,
AAPE^AABD.AAPN^AABC.AAEN^AADC.
PEAEENPEPAPNnnPEENPEBD
''BD-AD—DC'BD~BA~Be"BD一DC'PN一BC
(2)VPN/7BC,???AAPN^AABC.VAD±BC,ABN=AED.
.PN_BC_12_3
''AE-AD-8-2
(3)設(shè)正方形PNMQ的邊長為x.
*/PN〃:BC,△APNsAABC.
..些=空....已=三解得x=4.8
ADBC812
???PN=4.8.
17.(2024上海)如圖,在矩形ABCD中,E為邊CD上一點,且AE±BD.
(1)求證:AD2=DE-DC;
(2)F為線段AE的延長線上一點,連接CF.若EF=CF=卯0,求證:CE=AD.
證明:(1)在矩形ABCD4J,ZBAD=90°,ZADE=90°,AB=DC,
JZABD+ZADB=90°.
VAE±BD,.\ZDAE+ZADB=90°.
ZABD=ZDAE.VZBAD=ZADE=90°,
???△ADE?△BAD./.—=空即AD2=DE?BA.
BAAD
???AB=DC,.-.AD2=DEDC.
⑵連接AC交BD于點O.
在矢巨形ABCD中,/ADE=90。,貝!J/DAE+/AED=90。,
AE_LBD,ZDAE+ZADB=90°..\ZADB=ZAED.
ZFEC=ZAED,.\ZADO=ZFEC.
在矩形ABCD中,CM=。。=|BD,
1
???EF=CF=;BD,:.OA=OD=EF=CF
:.ZADO=ZOAD,ZFEC=ZFCE.
ZADO=ZFEC,.\ZADO=ZOAD=ZFEC=ZFCE.
/.ODA=Z.FEC,
在4ODA和4FEC中{^OAD=乙FCE,
OD=FE,
:.AODA^AFEC(AAS)..\CE=AD.
18.(2024湖北)如圖在矩形ABCD中,E,F分別在AD,BC上,將四邊形ABFE沿EF翻折,使A的對稱點P落在C
D上,B的對稱點為G,PG交BC于點H.
(1)求證:△EDP^APCH.
⑵若P為CD的中點,且AB=2,BC=3,求GH的長.
⑶連接BG,若P為CD的中點,H為BC的中點,探究BG與AB的數(shù)量關(guān)系”并說明理由.
解:(1)證明::四邊形ABCD是矩形.
AED
:.ZA=ZD=ZC=90o..\Zl+Z3=90°.|尸&
E,F分別在AD,BC上,將四邊形ABFE沿EF翻折,使A的對稱點P落在DC上,//I
Bc
:.ZEPH=ZA=90°..\Zl+Z2=90°.G
/.Z3=Z2..\AEDP^>APCH.
(2):四邊形ABCD是矩形,
CD=AB=2,AD=BC=3,/A=ZD=ZC=90°.
VP為CD中點,.DP=CP=/x2=1.
設(shè)EP=AE=x,ED=AD-x=3-x.
在RtAEDP中,EP2=ED2+DP2,
即%2=(3-x)2+1,解得%=I,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個性化定制化接送機服務(wù)合同
- 互聯(lián)網(wǎng)域名糾紛調(diào)解服務(wù)合同
- 影視作品角色肖像使用權(quán)及形象授權(quán)合同
- 跨國旅行急救培訓AED租賃與緊急救援服務(wù)協(xié)議
- 2025至2031年中國吸水嘴市場現(xiàn)狀分析及前景預(yù)測報告
- 2025至2030年數(shù)控成型復(fù)合刀具項目投資價值分析報告
- 2025至2030年中國極速賽車行業(yè)投資前景及策略咨詢報告
- 2025-2030年中國門封磁數(shù)據(jù)監(jiān)測研究報告
- 2025-2030年中國單組份烤漆數(shù)據(jù)監(jiān)測研究報告
- 2024至2030年中國耐腐壓力表市場調(diào)查研究報告-市場調(diào)查研究報告-市場調(diào)研
- 2025至2030中國電化學儲能行業(yè)發(fā)展現(xiàn)狀及趨勢前景預(yù)判研究報告
- 2025年公共衛(wèi)生與預(yù)防醫(yī)學知識考試試題及答案
- 離婚協(xié)議書原版
- 2025年高考地理復(fù)習 大單元八 人口、城鎮(zhèn)與大都市輻射 題庫
- 2025電力變壓器(電抗器)綜合監(jiān)測與預(yù)警裝置
- 新人教版數(shù)學五年級下冊3.3 練習五課件
- 中央2025年陸軍面向社會公開招考專業(yè)技能類文職人員筆試歷年參考題庫附帶答案詳解
- 湖北省武漢市2025屆高中畢業(yè)生四月調(diào)研考試化學試題及答案(武漢四調(diào))
- 土木工程CAD-終結(jié)性考核-國開(SC)-參考資料
- MOOC 創(chuàng)新與創(chuàng)業(yè)管理-南京師范大學 中國大學慕課答案
- 3 春夜喜雨課件(共16張PPT)
評論
0/150
提交評論