




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
復(fù)數(shù)——:【學(xué)習(xí)要求】復(fù)數(shù)的基本概念、復(fù)數(shù)相等的充要條件以及復(fù)數(shù)的代數(shù)運算是高考的熱點,并且一般在前三題的位置,主要考查對復(fù)數(shù)概念的理解以及復(fù)數(shù)的加減乘除四則運算,難度較小.【學(xué)習(xí)指導(dǎo)】1.要理解復(fù)數(shù)的相關(guān)概念如實部、虛部、純虛數(shù)、共軛復(fù)數(shù)等,以及復(fù)數(shù)的幾何意義.2.要把復(fù)數(shù)的基本運算作為復(fù)習(xí)的重點,尤其是復(fù)數(shù)除法的運算,如復(fù)數(shù)冪的運算與加法、除法的結(jié)合,復(fù)數(shù)的乘法與共軛復(fù)數(shù)的性質(zhì)相結(jié)合等.因考題較容易,所以重在練基礎(chǔ).【基礎(chǔ)梳理】1.復(fù)數(shù)的有關(guān)概念(1)復(fù)數(shù)的概念形如a+bi(a,b∈R)的數(shù)叫復(fù)數(shù),其中a,b分別是它的實部和虛部;若b=0,則a+bi為實數(shù);若b≠0,則a+bi為虛數(shù);若a=0且b≠0,則a+bi為純虛數(shù).(2)復(fù)數(shù)相等:a+bi=c+di?a=c且b=d(a,b,c,d∈R).(3)共軛復(fù)數(shù):a+bi與c+di共軛?a=c且b=-d(a,b,c,d∈R)..(4)復(fù)數(shù)的模:向量eq\o(OZ,\s\up16(→))的模r叫做復(fù)數(shù)z=a+bi(a,b∈R)的模,記作|z|或|a+bi|,即|z|=|a+bi|=eq\r(a2+b2).2.復(fù)數(shù)的四則運算設(shè)z1=a+bi,z2=c+di(a,b,c,d∈R),則(1)加法:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i;(2)減法:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i;(3)乘法:z1·z2=(a+bi)·(c+di)=(ac-bd)+(ad+bc)i;(4)除法:eq\f(z1,z2)=eq\f(a+bi,c+di)==(c+di≠0).3.一條規(guī)律任意兩個復(fù)數(shù)全是實數(shù)時能比較大小,其他情況不能比較大?。?.兩條性質(zhì)(1)i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i,in+in+1+in+2+in+3=0(各式中n∈N).(2)(1±i)2=±2i,eq\f(1+i,1-i)=i,eq\f(1-i,1+i)=-i.【雙基自測】1.復(fù)數(shù)eq\f(-i,1+2i)等于()A.eq\f(1,5)B.-eq\f(1,5)C.-eq\f(1,5)iD.-eq\f(2,5)解析-eq\f(i,1+2i)=-i1-2i1+2i1-2i=eq\f(-2-i,5)=-eq\f(2,5)-eq\f(1,5)i.答案D2.復(fù)數(shù)eq\f(1-3i,1-i)=()A.2-iB.2+iC.-1-2iD.-1+2i解析eq\f(1-3i,1-i)=eq\f(1,2)(1-3i)(1+i)=eq\f(1,2)(4-2i)=2-i.答案A3.若a,b∈R,且(a+i)i=b+i,則()A.a(chǎn)=1,b=1 B.a(chǎn)=-1,b=1C.a(chǎn)=1,b=-1 D.a(chǎn)=-1,b=-1解析由(a+i)i=b+i,得:-1+ai=b+i,根據(jù)復(fù)數(shù)相等得:a=1,b=-1.答案C4.設(shè)復(fù)數(shù)z滿足(1+i)z=2,其中i為虛數(shù)單位,則z=().A.2-2iB.2+2iC.1-iD.1+i解析z=eq\f(2,1+i)==1-i.答案C5.i2(1+i)的實部是________.解析i2(1+i)=-1-i.答案-1考向一復(fù)數(shù)的有關(guān)概念例1.復(fù)數(shù)eq\f(1+ai,2-i)為純虛數(shù),則實數(shù)a為().A.2B.-2C.-eq\f(1,2)D.eq\f(1,2)解析eq\f(1+ai,2-i)==eq\f(2-a,5)+eq\f(2a+1,5)i,由純虛數(shù)的概念知:eq\f(2-a,5)=0,∴a=2.答案A方法總結(jié)復(fù)數(shù)的分類及對應(yīng)點的位置問題都可以轉(zhuǎn)化為復(fù)數(shù)的實部與虛部應(yīng)該滿足的條件問題,只需把復(fù)數(shù)化為代數(shù)形式,列出實部、虛部滿足的方程即可.訓(xùn)練1.已知a∈R,復(fù)數(shù)z1=2+ai,z2=1-2i,若eq\f(z1,z2)為純虛數(shù),則復(fù)數(shù)eq\f(z1,z2)的虛部為________.解析eq\f(z1,z2)=eq\f(2+ai,1-2i)==eq\f(2-2a,5)+eq\f(a+4,5)i,∵eq\f(z1,z2)為純虛數(shù),∴eq\f(2-2a,5)=0,解得a=1.故eq\f(z1,z2)的虛部為1.答案1考向二復(fù)數(shù)的幾何意義例2.在復(fù)平面內(nèi),復(fù)數(shù)6+5i,-2+3i對應(yīng)的點分別為A,B,若C為線段AB的中點,則點C對應(yīng)的復(fù)數(shù)是().A.4+8iB.8+2iC.2+4iD.4+i[審題視點]利用中點坐標(biāo)公式可求.解析復(fù)數(shù)6+5i對應(yīng)的點為A(6,5),復(fù)數(shù)-2+3i對應(yīng)的點為B(-2,3).利用中點坐標(biāo)公式得線段AB的中點C(2,4),故點C對應(yīng)的復(fù)數(shù)為2+4i.答案C方法總結(jié)復(fù)數(shù)的幾何意義可以讓我們運用數(shù)形結(jié)合思想把復(fù)數(shù)、向量、解析幾何有機的結(jié)合在一起,能夠更加靈活的解決問題.高考中對復(fù)數(shù)幾何意義的考查主要集中在復(fù)數(shù)對應(yīng)點的位置、加減法的幾何意義、模的意義等.訓(xùn)練2.復(fù)數(shù)eq\f(1+i,1-i)+i2012對應(yīng)的點位于復(fù)平面內(nèi)的第______象限.解析eq\f(1+i,1-i)+i2012=i+1.故對應(yīng)的點(1,1)位于復(fù)平面內(nèi)第一象限.答案一考向三復(fù)數(shù)的運算例3.已知復(fù)數(shù)z1,滿足(z1-2)(1+i)=1-i,復(fù)數(shù)z2的虛部為2,且z1·z2是實數(shù),求z2.[審題視點]利用復(fù)數(shù)的乘除運算求z1,再設(shè)z2=a+2i(a∈R),利用z1·z2是實數(shù),求a.解由(z1-2)(1+i)=1-i,得z1-2=eq\f(1-i,1+i)=-i,即z1=2-i.設(shè)z2=a+2i(a∈R),∴z1·z2=(2-i)(a+2i)=(2a+2)+(4-a∵z1·z2∈R.∴a=4.∴z2=4+2i.方法總結(jié)復(fù)數(shù)的加法、減法、乘法運算可以類比多項式運算,除法關(guān)鍵是分子分母同乘以分母的共軛復(fù)數(shù),注意要把i的冪寫成最簡形式.訓(xùn)練3.i為虛數(shù)單位,則eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1+i,1-i)))2011=().A.-iB.-1C.iD.1解析因為eq\f(1+i,1-i)=i,所以,原式=i2011=i4×502+3=i3=-i.答案A難點突破——復(fù)數(shù)的幾何意義問題復(fù)數(shù)的幾何意義是復(fù)數(shù)中的難點,化解難點的關(guān)鍵是對復(fù)數(shù)的幾何意義的正確理解.對于復(fù)數(shù)的幾何意義的理解可以從以下兩個方面著手:(1)復(fù)數(shù)z=a+bi(a,b∈R)的模|z|=eq\r(a2+b2),實際上就是指復(fù)平面上的點Z到原點O的距離;|z1-z2|的幾何意義是復(fù)平面上的點Z1、Z2兩點間的距離.(2)復(fù)數(shù)z、復(fù)平面上的點Z及向量eq\o(OZ,\s\up16(→))相互聯(lián)系,即z=a+bi(a,b∈R)?Z(a,b)?eq\o(OZ,\s\up16(→)).【示例1】?復(fù)數(shù)z=eq\f(2-i,2+i)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)村院落抵債合同范例
- 個人簽訂技術(shù)合同范例
- 會所托管合同范例
- 個人崗位績效合同范例
- 養(yǎng)雞正規(guī)購銷合同范例
- 2025版股票交易基金合同模板
- 農(nóng)業(yè)林地收購合同范例
- 2025四川省農(nóng)資購買合同
- 業(yè)主不知服務(wù)合同范例
- 農(nóng)田有償租賃合同范例
- 海南旅游演藝融合發(fā)展問題探討
- 初級注冊安全工程師課件
- 房地產(chǎn)公司2025年度項目開發(fā)計劃
- 物業(yè)保盤計劃制作與實施指導(dǎo)
- 2025年北京市海淀區(qū)九年級初三一模英語試卷(含答案)
- DB32T 4793-2024球墨鑄鐵管排水系統(tǒng)應(yīng)用技術(shù)規(guī)程
- 5.3基本經(jīng)濟(jì)制度 同步教案 -2024-2025學(xué)年統(tǒng)編版道德與法治八年級下冊
- 聯(lián)合實驗室共建合作協(xié)議
- 建筑工地各工種工作職責(zé)
- 火災(zāi)自動報警系統(tǒng)設(shè)計規(guī)范完整版2025年
評論
0/150
提交評論