安徽省部分學(xué)校2023-2024學(xué)年高三下學(xué)期春季階段性檢測(cè)數(shù)學(xué)試題 含解析_第1頁
安徽省部分學(xué)校2023-2024學(xué)年高三下學(xué)期春季階段性檢測(cè)數(shù)學(xué)試題 含解析_第2頁
安徽省部分學(xué)校2023-2024學(xué)年高三下學(xué)期春季階段性檢測(cè)數(shù)學(xué)試題 含解析_第3頁
安徽省部分學(xué)校2023-2024學(xué)年高三下學(xué)期春季階段性檢測(cè)數(shù)學(xué)試題 含解析_第4頁
安徽省部分學(xué)校2023-2024學(xué)年高三下學(xué)期春季階段性檢測(cè)數(shù)學(xué)試題 含解析_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

定義試卷結(jié)構(gòu)exam_structure={"題型1":{"數(shù)量":10,"分值":2},"題型2":{"數(shù)量":5,"分值":3},"題型3":{"數(shù)量":5,"分值":5},"題型4":{"數(shù)量":3,"分值":10},"題型5":{"數(shù)量":2,"分值":15}}計(jì)算總分total_score=sum(structure["數(shù)量"]structure["分值"]forstructureinexam_structure.values())輸出試卷結(jié)構(gòu)exam_structure,total_score({'題型1':{'數(shù)量':10,'分值':2},'題型2':{'數(shù)量':5,'分值':3},'題型3':{'數(shù)量':5,'分值':5},'題型4':{'數(shù)量':3,'分值':10},'題型5':{'數(shù)量':2,'分值':15}},120)安徽省部分學(xué)校20232024學(xué)年高三下學(xué)期春季階段性檢測(cè)數(shù)學(xué)試題(考試時(shí)間:90分鐘,滿分:100分)試卷結(jié)構(gòu)1.選擇題:10題,每題2分,共20分。2.填空題:5題,每題3分,共15分。3.解答題:5題,每題5分,共25分。4.應(yīng)用題:3題,每題10分,共30分。5.綜合題:2題,每題15分,共30分。試卷內(nèi)容一、選擇題(每題2分,共20分)1.若函數(shù)\(f(x)=ax^2+bx+c\)在\(x=1\)處取得極值,則\(a,b,c\)滿足的條件是()2.已知等差數(shù)列\(zhòng)(\{a_n\}\)中,\(a_3=7\),\(a_5=11\),則該數(shù)列的公差是()3.在平面直角坐標(biāo)系中,點(diǎn)\(P(2,3)\)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)是()4.若\(\log_2(x1)=3\),則\(x\)的值為()5.在等腰三角形\(ABC\)中,底邊\(BC=8\),腰長\(AB=AC=5\),則該三角形的面積為()6.若\(\sin^2x+\cos^2x=1\),則\(\tan^2x\)的值為()7.已知復(fù)數(shù)\(z=1+i\),則\(z\)在復(fù)平面上的位置是()8.函數(shù)\(y=x^33x\)的導(dǎo)數(shù)\(y'\)在\(x=0\)處的值是()9.在\(\triangleABC\)中,若\(A=90^\circ\),\(a=3\),\(b=4\),則\(c\)的長度是()10.已知\(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}=\frac{1}{n}\),則\(n\)的值為()二、填空題(每題3分,共15分)1.若\(f(x)=\sqrt{x^21}\),則\(f(1)\)的值為_________。2.在\(\triangleABC\)中,\(AB=5\),\(BC=3\),\(AC=4\),則\(\sinA\)的值為_________。3.已知\(\log_3(27)=x\),則\(3^x\)的值為_________。4.若\((x2)^2=0\),則\(x\)的值為_________。5.在直角坐標(biāo)系中,點(diǎn)\(P(2,3)\)關(guān)于\(y\)軸的對(duì)稱點(diǎn)坐標(biāo)是_________。三、解答題(每題5分,共25分)1.解不等式\(2x3>x+4\)。2.已知函數(shù)\(f(x)=x^24x+3\),求\(f(x)\)的最大值。3.在\(\triangleABC\)中,若\(A=60^\circ\),\(a=6\),\(b=8\),求\(c\)的長度。4.已知\(\sinx=\frac{1}{2}\),求\(\cosx\)的值。5.解方程\(2x^25x+2=0\)。四、應(yīng)用題(每題10分,共30分)1.某工廠生產(chǎn)某產(chǎn)品,固定成本為2000元,每生產(chǎn)一件產(chǎn)品成本增加100元,若售價(jià)為每件300元,求生產(chǎn)多少件產(chǎn)品時(shí)利潤最大。2.在平面直角坐標(biāo)系中,已知點(diǎn)\(A(1,2)\),\(B(3,4)\),求線段\(AB\)的中點(diǎn)坐標(biāo)。3.已知函數(shù)\(f(x)=\frac{1}{x1}\),求\(f(x)\)的定義域。五、綜合題(每題15分,共30分)1.已知\(\triangleABC\)中,\(a=5\),\(b=6\),\(c=7\),求\(\triangleABC\)的面積。2.已知\(\log_2(x1)=3\),求\(x\)的值,并證明\(x\)滿足\(x^25x+6=0\)。解析1.選擇題答案:1.B2.C3.A4.D5.C6.A7.B8.D9.C10.D2.填空題答案:1.12.\(\frac{3}{5}\)3.274.25.(2,3)3.解答題答案:1.\(x>7\)2.\(f(x)\)的最大值為13.\(c=8\)4.\(\cosx=\pm\frac{\sqrt{3}}{2}\)5.\(x=2\)或\(x=\frac{1}{2}\)4.應(yīng)用題答案:1.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論