




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密封線第1頁(yè),共3頁(yè)德州學(xué)院
《機(jī)器學(xué)習(xí)初步》2023-2024學(xué)年第二學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共25個(gè)小題,每小題1分,共25分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在構(gòu)建一個(gè)用于圖像識(shí)別的卷積神經(jīng)網(wǎng)絡(luò)(CNN)時(shí),需要考慮許多因素。假設(shè)我們正在設(shè)計(jì)一個(gè)用于識(shí)別手寫數(shù)字的CNN模型。以下關(guān)于CNN設(shè)計(jì)的描述,哪一項(xiàng)是不正確的?()A.增加卷積層的數(shù)量可以提取更復(fù)雜的圖像特征,提高識(shí)別準(zhǔn)確率B.較大的卷積核尺寸能夠捕捉更廣泛的圖像信息,有助于模型性能提升C.在卷積層后添加池化層可以減少特征數(shù)量,降低計(jì)算復(fù)雜度,同時(shí)保持主要特征D.使用合適的激活函數(shù)如ReLU可以引入非線性,增強(qiáng)模型的表達(dá)能力2、假設(shè)正在進(jìn)行一個(gè)特征選擇任務(wù),需要從大量的特征中選擇最具代表性和區(qū)分性的特征。以下哪種特征選擇方法基于特征與目標(biāo)變量之間的相關(guān)性?()A.過(guò)濾式方法B.包裹式方法C.嵌入式方法D.以上方法都可以3、在一個(gè)異常檢測(cè)問(wèn)題中,例如檢測(cè)網(wǎng)絡(luò)中的異常流量,數(shù)據(jù)通常呈現(xiàn)出正常樣本遠(yuǎn)遠(yuǎn)多于異常樣本的情況。如果使用傳統(tǒng)的監(jiān)督學(xué)習(xí)算法,可能會(huì)因?yàn)閿?shù)據(jù)不平衡而導(dǎo)致模型對(duì)異常樣本的檢測(cè)能力不足。以下哪種方法更適合解決這類異常檢測(cè)問(wèn)題?()A.構(gòu)建一個(gè)二分類模型,將數(shù)據(jù)分為正常和異常兩類B.使用無(wú)監(jiān)督學(xué)習(xí)算法,如基于密度的聚類算法,識(shí)別異常點(diǎn)C.對(duì)數(shù)據(jù)進(jìn)行平衡處理,如復(fù)制異常樣本,使正常和異常樣本數(shù)量相等D.以上方法都不適合,異常檢測(cè)問(wèn)題無(wú)法通過(guò)機(jī)器學(xué)習(xí)解決4、深度學(xué)習(xí)是機(jī)器學(xué)習(xí)的一個(gè)重要分支,它利用深度神經(jīng)網(wǎng)絡(luò)進(jìn)行學(xué)習(xí)。以下關(guān)于深度學(xué)習(xí)的說(shuō)法中,錯(cuò)誤的是:深度神經(jīng)網(wǎng)絡(luò)具有多層結(jié)構(gòu),可以自動(dòng)學(xué)習(xí)數(shù)據(jù)的特征表示。深度學(xué)習(xí)在圖像識(shí)別、語(yǔ)音識(shí)別等領(lǐng)域取得了巨大的成功。那么,下列關(guān)于深度學(xué)習(xí)的說(shuō)法錯(cuò)誤的是()A.卷積神經(jīng)網(wǎng)絡(luò)是一種專門用于處理圖像數(shù)據(jù)的深度神經(jīng)網(wǎng)絡(luò)B.循環(huán)神經(jīng)網(wǎng)絡(luò)適用于處理序列數(shù)據(jù),如文本、時(shí)間序列等C.深度神經(jīng)網(wǎng)絡(luò)的訓(xùn)練需要大量的計(jì)算資源和時(shí)間D.深度學(xué)習(xí)算法可以自動(dòng)學(xué)習(xí)到最優(yōu)的特征表示,不需要人工設(shè)計(jì)特征5、某機(jī)器學(xué)習(xí)項(xiàng)目需要對(duì)圖像中的物體進(jìn)行實(shí)例分割,除了常見(jiàn)的深度學(xué)習(xí)模型,以下哪種技術(shù)可以提高分割的精度?()A.多尺度訓(xùn)練B.數(shù)據(jù)增強(qiáng)C.模型融合D.以上技術(shù)都可以6、機(jī)器學(xué)習(xí)是一門涉及統(tǒng)計(jì)學(xué)、計(jì)算機(jī)科學(xué)和人工智能的交叉學(xué)科。它的目標(biāo)是讓計(jì)算機(jī)從數(shù)據(jù)中自動(dòng)學(xué)習(xí)規(guī)律和模式,從而能夠進(jìn)行預(yù)測(cè)、分類、聚類等任務(wù)。以下關(guān)于機(jī)器學(xué)習(xí)的說(shuō)法中,錯(cuò)誤的是:機(jī)器學(xué)習(xí)算法可以分為監(jiān)督學(xué)習(xí)、無(wú)監(jiān)督學(xué)習(xí)和強(qiáng)化學(xué)習(xí)三大類。監(jiān)督學(xué)習(xí)需要有標(biāo)注的訓(xùn)練數(shù)據(jù),無(wú)監(jiān)督學(xué)習(xí)則不需要標(biāo)注數(shù)據(jù)。那么,下列關(guān)于機(jī)器學(xué)習(xí)的說(shuō)法錯(cuò)誤的是()A.決策樹是一種監(jiān)督學(xué)習(xí)算法,可以用于分類和回歸任務(wù)B.K均值聚類是一種無(wú)監(jiān)督學(xué)習(xí)算法,用于將數(shù)據(jù)分成K個(gè)聚類C.強(qiáng)化學(xué)習(xí)通過(guò)與環(huán)境的交互來(lái)學(xué)習(xí)最優(yōu)策略,適用于機(jī)器人控制等領(lǐng)域D.機(jī)器學(xué)習(xí)算法的性能只取決于算法本身,與數(shù)據(jù)的質(zhì)量和數(shù)量無(wú)關(guān)7、在一個(gè)聚類問(wèn)題中,需要將一組數(shù)據(jù)點(diǎn)劃分到不同的簇中,使得同一簇內(nèi)的數(shù)據(jù)點(diǎn)相似度較高,不同簇之間的數(shù)據(jù)點(diǎn)相似度較低。假設(shè)我們使用K-Means算法進(jìn)行聚類,以下關(guān)于K-Means算法的初始化步驟,哪一項(xiàng)是正確的?()A.隨機(jī)選擇K個(gè)數(shù)據(jù)點(diǎn)作為初始聚類中心B.選擇數(shù)據(jù)集中前K個(gè)數(shù)據(jù)點(diǎn)作為初始聚類中心C.計(jì)算數(shù)據(jù)點(diǎn)的均值作為初始聚類中心D.以上方法都可以,對(duì)最終聚類結(jié)果沒(méi)有影響8、在一個(gè)分類問(wèn)題中,如果數(shù)據(jù)集中存在多個(gè)類別,且類別之間存在層次結(jié)構(gòu),以下哪種方法可以考慮這種層次結(jié)構(gòu)?()A.多分類邏輯回歸B.決策樹C.層次分類算法D.支持向量機(jī)9、當(dāng)使用樸素貝葉斯算法進(jìn)行分類時(shí),假設(shè)特征之間相互獨(dú)立。但在實(shí)際數(shù)據(jù)中,如果特征之間存在一定的相關(guān)性,這會(huì)對(duì)算法的性能產(chǎn)生怎樣的影響()A.提高分類準(zhǔn)確性B.降低分類準(zhǔn)確性C.對(duì)性能沒(méi)有影響D.可能提高也可能降低準(zhǔn)確性,取決于數(shù)據(jù)10、在一個(gè)強(qiáng)化學(xué)習(xí)的應(yīng)用中,環(huán)境的狀態(tài)空間非常大且復(fù)雜。以下哪種策略可能有助于提高學(xué)習(xí)效率?()A.基于值函數(shù)的方法,如Q-learning,通過(guò)估計(jì)狀態(tài)值來(lái)選擇動(dòng)作,但可能存在過(guò)高估計(jì)問(wèn)題B.策略梯度方法,直接優(yōu)化策略,但方差較大且收斂慢C.演員-評(píng)論家(Actor-Critic)方法,結(jié)合值函數(shù)和策略梯度的優(yōu)點(diǎn),但模型復(fù)雜D.以上方法結(jié)合使用,并根據(jù)具體環(huán)境進(jìn)行調(diào)整11、在進(jìn)行機(jī)器學(xué)習(xí)模型訓(xùn)練時(shí),過(guò)擬合是一個(gè)常見(jiàn)的問(wèn)題。過(guò)擬合意味著模型在訓(xùn)練數(shù)據(jù)上表現(xiàn)很好,但在新的、未見(jiàn)過(guò)的數(shù)據(jù)上表現(xiàn)不佳。為了防止過(guò)擬合,可以采取多種正則化方法。假設(shè)我們正在訓(xùn)練一個(gè)神經(jīng)網(wǎng)絡(luò),以下哪種正則化技術(shù)通常能夠有效地減少過(guò)擬合?()A.增加網(wǎng)絡(luò)的層數(shù)和神經(jīng)元數(shù)量B.在損失函數(shù)中添加L1正則項(xiàng)C.使用較小的學(xué)習(xí)率進(jìn)行訓(xùn)練D.減少訓(xùn)練數(shù)據(jù)的數(shù)量12、在一個(gè)股票價(jià)格預(yù)測(cè)的場(chǎng)景中,需要根據(jù)歷史的股票價(jià)格、成交量、公司財(cái)務(wù)指標(biāo)等數(shù)據(jù)來(lái)預(yù)測(cè)未來(lái)的價(jià)格走勢(shì)。數(shù)據(jù)具有非線性、非平穩(wěn)和高噪聲的特點(diǎn)。以下哪種方法可能是最合適的?()A.傳統(tǒng)的線性回歸方法,簡(jiǎn)單直觀,但無(wú)法處理非線性關(guān)系B.支持向量回歸(SVR),對(duì)非線性數(shù)據(jù)有一定處理能力,但對(duì)高噪聲數(shù)據(jù)可能效果不佳C.隨機(jī)森林回歸,能夠處理非線性和高噪聲數(shù)據(jù),但解釋性較差D.基于深度學(xué)習(xí)的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)或長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM),對(duì)時(shí)間序列數(shù)據(jù)有較好的建模能力,但容易過(guò)擬合13、在一個(gè)推薦系統(tǒng)中,為了提高推薦的多樣性和新穎性,以下哪種方法可能是有效的?()A.引入隨機(jī)推薦,增加推薦結(jié)果的不確定性,但可能降低相關(guān)性B.基于內(nèi)容的多樣性優(yōu)化,選擇不同類型的物品進(jìn)行推薦,但可能忽略用戶偏好C.探索-利用平衡策略,在推薦熟悉物品和新物品之間找到平衡,但難以精確控制D.以上方法結(jié)合使用,并根據(jù)用戶反饋動(dòng)態(tài)調(diào)整14、在機(jī)器學(xué)習(xí)中,特征選擇是一項(xiàng)重要的任務(wù),旨在從眾多的原始特征中選擇出對(duì)模型性能有顯著影響的特征。假設(shè)我們有一個(gè)包含大量特征的數(shù)據(jù)集,在進(jìn)行特征選擇時(shí),以下哪種方法通常不被采用?()A.基于相關(guān)性分析,選擇與目標(biāo)變量高度相關(guān)的特征B.隨機(jī)選擇一部分特征,進(jìn)行試驗(yàn)和比較C.使用遞歸特征消除(RFE)方法,逐步篩選特征D.基于領(lǐng)域知識(shí)和經(jīng)驗(yàn),手動(dòng)選擇特征15、在一個(gè)強(qiáng)化學(xué)習(xí)場(chǎng)景中,智能體在探索新的策略和利用已有的經(jīng)驗(yàn)之間需要進(jìn)行平衡。如果智能體過(guò)于傾向于探索,可能會(huì)導(dǎo)致效率低下;如果過(guò)于傾向于利用已有經(jīng)驗(yàn),可能會(huì)錯(cuò)過(guò)更好的策略。以下哪種方法可以有效地控制這種平衡?()A.調(diào)整學(xué)習(xí)率B.調(diào)整折扣因子C.使用ε-貪婪策略,控制探索的概率D.增加訓(xùn)練的輪數(shù)16、在機(jī)器學(xué)習(xí)中,交叉驗(yàn)證是一種常用的評(píng)估模型性能和選擇超參數(shù)的方法。假設(shè)我們正在使用K折交叉驗(yàn)證來(lái)評(píng)估一個(gè)分類模型。以下關(guān)于交叉驗(yàn)證的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.將數(shù)據(jù)集隨機(jī)分成K個(gè)大小相等的子集,依次選擇其中一個(gè)子集作為測(cè)試集,其余子集作為訓(xùn)練集B.通過(guò)計(jì)算K次實(shí)驗(yàn)的平均準(zhǔn)確率等指標(biāo)來(lái)評(píng)估模型的性能C.可以在交叉驗(yàn)證過(guò)程中同時(shí)調(diào)整多個(gè)超參數(shù),找到最優(yōu)的超參數(shù)組合D.交叉驗(yàn)證只適用于小數(shù)據(jù)集,對(duì)于大數(shù)據(jù)集計(jì)算成本過(guò)高,不適用17、某研究需要對(duì)音頻信號(hào)進(jìn)行分類,例如區(qū)分不同的音樂(lè)風(fēng)格。以下哪種特征在音頻分類中經(jīng)常被使用?()A.頻譜特征B.時(shí)域特征C.時(shí)頻特征D.以上特征都常用18、想象一個(gè)市場(chǎng)營(yíng)銷的項(xiàng)目,需要根據(jù)客戶的購(gòu)買歷史、瀏覽行為和人口統(tǒng)計(jì)信息來(lái)預(yù)測(cè)其未來(lái)的購(gòu)買傾向。同時(shí),要能夠解釋模型的決策依據(jù)以指導(dǎo)營(yíng)銷策略的制定。以下哪種模型和策略可能是最適用的?()A.建立邏輯回歸模型,通過(guò)系數(shù)分析解釋變量的影響,但對(duì)于復(fù)雜的非線性關(guān)系可能不敏感B.運(yùn)用決策樹集成算法,如梯度提升樹(GradientBoostingTree),準(zhǔn)確性較高,且可以通過(guò)特征重要性評(píng)估解釋模型,但局部解釋性相對(duì)較弱C.采用深度學(xué)習(xí)中的多層卷積神經(jīng)網(wǎng)絡(luò),預(yù)測(cè)能力強(qiáng),但幾乎無(wú)法提供直觀的解釋D.構(gòu)建基于規(guī)則的分類器,明確的規(guī)則易于理解,但可能無(wú)法處理復(fù)雜的數(shù)據(jù)模式和不確定性19、考慮一個(gè)推薦系統(tǒng),需要根據(jù)用戶的歷史行為和興趣為其推薦相關(guān)的商品或內(nèi)容。在構(gòu)建推薦模型時(shí),可以使用基于內(nèi)容的推薦、協(xié)同過(guò)濾推薦或混合推薦等方法。如果用戶的歷史行為數(shù)據(jù)較為稀疏,以下哪種推薦方法可能更合適?()A.基于內(nèi)容的推薦,利用商品的屬性和用戶的偏好進(jìn)行推薦B.協(xié)同過(guò)濾推薦,基于用戶之間的相似性進(jìn)行推薦C.混合推薦,結(jié)合多種推薦方法的優(yōu)點(diǎn)D.以上方法都不合適,無(wú)法進(jìn)行有效推薦20、某研究需要對(duì)一個(gè)大型數(shù)據(jù)集進(jìn)行降維,同時(shí)希望保留數(shù)據(jù)的主要特征。以下哪種降維方法在這種情況下可能較為合適?()A.主成分分析(PCA)B.線性判別分析(LDA)C.t-分布隨機(jī)鄰域嵌入(t-SNE)D.自編碼器21、在進(jìn)行時(shí)間序列預(yù)測(cè)時(shí),有多種方法可供選擇。假設(shè)我們要預(yù)測(cè)股票價(jià)格的走勢(shì)。以下關(guān)于時(shí)間序列預(yù)測(cè)方法的描述,哪一項(xiàng)是不正確的?()A.自回歸移動(dòng)平均(ARMA)模型假設(shè)時(shí)間序列是線性的,通過(guò)對(duì)歷史數(shù)據(jù)的加權(quán)平均和殘差來(lái)進(jìn)行預(yù)測(cè)B.差分整合移動(dòng)平均自回歸(ARIMA)模型可以處理非平穩(wěn)的時(shí)間序列,通過(guò)差分操作將其轉(zhuǎn)化為平穩(wěn)序列C.長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)能夠捕捉時(shí)間序列中的長(zhǎng)期依賴關(guān)系,適用于復(fù)雜的時(shí)間序列預(yù)測(cè)任務(wù)D.所有的時(shí)間序列預(yù)測(cè)方法都能準(zhǔn)確地預(yù)測(cè)未來(lái)的股票價(jià)格,不受市場(chǎng)不確定性和突發(fā)事件的影響22、在機(jī)器學(xué)習(xí)中,模型評(píng)估是非常重要的環(huán)節(jié)。以下關(guān)于模型評(píng)估的說(shuō)法中,錯(cuò)誤的是:常用的模型評(píng)估指標(biāo)有準(zhǔn)確率、精確率、召回率、F1值等??梢酝ㄟ^(guò)交叉驗(yàn)證等方法來(lái)評(píng)估模型的性能。那么,下列關(guān)于模型評(píng)估的說(shuō)法錯(cuò)誤的是()A.準(zhǔn)確率是指模型正確預(yù)測(cè)的樣本數(shù)占總樣本數(shù)的比例B.精確率是指模型預(yù)測(cè)為正類的樣本中真正為正類的比例C.召回率是指真正為正類的樣本中被模型預(yù)測(cè)為正類的比例D.模型的評(píng)估指標(biāo)越高越好,不需要考慮具體的應(yīng)用場(chǎng)景23、假設(shè)要對(duì)一個(gè)時(shí)間序列數(shù)據(jù)進(jìn)行預(yù)測(cè),例如股票價(jià)格的走勢(shì)。數(shù)據(jù)具有明顯的趨勢(shì)和季節(jié)性特征。以下哪種時(shí)間序列預(yù)測(cè)方法可能較為合適?()A.移動(dòng)平均法B.指數(shù)平滑法C.ARIMA模型D.以上方法都可能適用,取決于具體數(shù)據(jù)特點(diǎn)24、在自然語(yǔ)言處理任務(wù)中,如文本分類,詞向量表示是基礎(chǔ)。常見(jiàn)的詞向量模型有Word2Vec和GloVe等。假設(shè)我們有一個(gè)大量的文本數(shù)據(jù)集,想要得到高質(zhì)量的詞向量表示,同時(shí)考慮到計(jì)算效率和效果。以下關(guān)于這兩種詞向量模型的比較,哪一項(xiàng)是不準(zhǔn)確的?()A.Word2Vec可以通過(guò)CBOW和Skip-gram兩種方式訓(xùn)練,靈活性較高B.GloVe基于全局的詞共現(xiàn)統(tǒng)計(jì)信息,能夠捕捉更全局的語(yǔ)義關(guān)系C.Word2Vec訓(xùn)練速度較慢,不適用于大規(guī)模數(shù)據(jù)集D.GloVe在某些任務(wù)上可能比Word2Vec表現(xiàn)更好,但具體效果取決于數(shù)據(jù)和任務(wù)25、在一個(gè)強(qiáng)化學(xué)習(xí)問(wèn)題中,智能體需要在環(huán)境中通過(guò)不斷嘗試和學(xué)習(xí)來(lái)優(yōu)化其策略。如果環(huán)境具有高維度和連續(xù)的動(dòng)作空間,以下哪種算法通常被用于解決這類問(wèn)題?()A.Q-learningB.SARSAC.DeepQNetwork(DQN)D.PolicyGradient算法二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)簡(jiǎn)述機(jī)器學(xué)習(xí)中的Q-learning算法。2、(本題5分)簡(jiǎn)述情感分析任務(wù)中常用的機(jī)器學(xué)習(xí)方法。3、(本題5分)簡(jiǎn)述在機(jī)器學(xué)習(xí)中,如何進(jìn)行數(shù)據(jù)增強(qiáng)。4、(本題5分)說(shuō)明機(jī)器學(xué)習(xí)在老年醫(yī)學(xué)中的健康管理。三、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)運(yùn)用LSTM網(wǎng)絡(luò)對(duì)電商平臺(tái)的用戶流失率進(jìn)行預(yù)測(cè)。2、(本題5分)通過(guò)智慧城市數(shù)據(jù)改善城市公共服務(wù),提升居民生活質(zhì)量。3、(本題5分)利用隨機(jī)森林模型對(duì)用戶的購(gòu)買行為進(jìn)行預(yù)測(cè)。4、(本題5分)利用旅游規(guī)劃數(shù)據(jù)推薦熱
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CSBME 079-2024肺癌PET/CT正電子藥物臨床使用質(zhì)量驗(yàn)收要求
- T/CSBME 061-2022乳腺X射線高壓發(fā)生器
- T/CRIA 26003-2023鋼簾線單位產(chǎn)品能源消耗限額
- T/CNFMA B030-2023戶外林業(yè)機(jī)械以鋰離子電池為動(dòng)力源的手持式長(zhǎng)桿修枝剪刀
- T/CMMA 6-2019鎂質(zhì)膠凝材料及制品術(shù)語(yǔ)
- T/CITS 0003-2022標(biāo)準(zhǔn)“領(lǐng)跑者”評(píng)價(jià)要求電冰箱檢驗(yàn)檢測(cè)服務(wù)
- T/CIMA 0027-2021交流采樣測(cè)量裝置檢驗(yàn)規(guī)范
- T/CIIA 032.2-2022風(fēng)電企業(yè)綠色供應(yīng)鏈信息管理平臺(tái)第2部分:能源數(shù)據(jù)采集要求
- T/CIIA 016-2022智慧工地應(yīng)用規(guī)范
- T/CHES 55-2021技術(shù)供水系統(tǒng)沼蛤防治導(dǎo)則
- 工程勞務(wù)合作協(xié)議書
- 專利代理師考試題庫(kù)有答案分析2024年
- 電表過(guò)戶借用協(xié)議書
- 老年人房顫的綜合管理
- 2023-2024學(xué)年四年級(jí)數(shù)學(xué)下學(xué)期開(kāi)學(xué)摸底考試(A4版)(人教版)
- 私人合同協(xié)議書模板
- 《城鎮(zhèn)房屋租賃合同(示范文本)》(GF-2025-2614)
- 《建筑電氣工程施工》課件
- 2025年河北高考地理模擬預(yù)測(cè)試卷(含答案解析)
- 2025-2030中國(guó)多發(fā)性骨髓瘤的治療行業(yè)市場(chǎng)發(fā)展趨勢(shì)與前景展望戰(zhàn)略研究報(bào)告
- 腦卒中后吞咽障礙患者進(jìn)食護(hù)理的團(tuán)體標(biāo)準(zhǔn)應(yīng)用案例分享課件
評(píng)論
0/150
提交評(píng)論